OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 6–15

Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy

Jun Ye, Long-Sheng Ma, and John L. Hall  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 6-15 (1998)

View Full Text Article

Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider several highly sensitive techniques commonly used in detection of atomic and molecular absorptions. Their basic operating principles and corresponding performances are summarized and compared. We then present our latest results on the ultrasensitive detection of molecular overtone transitions to illustrate the principle and application of the cavity-enhanced frequency-modulation (FM) spectroscopy. An external cavity is used to enhance the molecular response to the light field, and an FM technique is applied for shot-noise-limited signal recovery. A perfect match between the FM sideband frequency and the cavity free spectral range makes the detection process insensitive to the laser-frequency noise relative to the cavity, and, at the same time, overcomes the cavity bandwidth limit. Working with a 1.064-μm Nd:YAG laser, we obtained sub-Doppler overtone resonances of C2HD, C2H2, and CO2 molecules. A detection sensitivity of 5×10−13 of integrated absorption (1×10−14/cm) over 1-s averaging time has been achieved.

© 1998 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(300.6390) Spectroscopy : Spectroscopy, molecular

Jun Ye, Long-Sheng Ma, and John L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B 15, 6-15 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).
  2. See, for example, Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983).
  3. A. C. Tam, “Photothermal spectroscopy as a sensitive spectroscopic tool,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed.Proc. SPIE 1435, 114–127 (1991).
  4. C. E. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976); M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
  5. W. M. Fairbank, Jr., T. W. Hänsch, and A. L. Schawlow, “Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence,” J. Opt. Soc. Am. 65, 199–204 (1975).
  6. W. Neuhauser, M. Hohenstatt, P. Toscheck, and H. Dehmelt, “Optical sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
  7. D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
  8. E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
  9. B. A. Bushaw, T. J. Whitaker, B. D. Cannon, and R. A. Warner, “Time-interval distribution and photon-burst-correlation spectroscopy of a strontium atomic beam,” J. Opt. Soc. Am. B 2, 1547–1553 (1985).
  10. G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
  11. G. D. Houser and E. Garmire, “Balanced detection technique to measure small changes in transmission,” Appl. Opt. 33, 1059–1062 (1994).
  12. K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE 1435, 298–309 (1991).
  13. J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
  14. A. Kastler, “Atomes à l’intérieur d’un interféromètre Perot–Fabry,” Appl. Opt. 1, 17–24 (1962).
  15. P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans. Instrum. Meas. TIM-29, 352–354 (1980).
  16. L.-S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
  17. M. De Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
  18. J. L. Hall and C. J. Bordé, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
  19. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
  20. D. Romanini and K. K. Lehmann, “Cavity ring-down overtone spectroscopy of HCN, H13CN, and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
  21. T. W. Hänsch, A. L. Schawlow, and P. E. Toschek, “Ultrasensitive response of a cw dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
  22. H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron. QE-16, 455–461 (1980).
  23. V. M. Baev and P. E. Toschek, “Sensitivity limits of laser intracavity spectroscopy,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff and U. Platt, eds., Proc. SPIE 1715, 381–392 (1993).
  24. H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
  25. B. Smaller, “Precise determination of the magnetic moment of the deuteron,” Phys. Rev. 83, 812–820 (1951); R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490–505 (1946).
  26. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
  27. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981); R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
  28. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1525 (1985).
  29. P. Werle, “Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers,” Appl. Phys. B 60, 499–506 (1995).
  30. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in FM spectroscopy: demonstration of shot-noise limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
  31. L.-G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
  32. D. R. Hjelme, S. Neegård, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1731–1733 (1995).
  33. G. R. Janik, C. B. Carlisle, and T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
  34. G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
  35. W. Zapka, M. D. Levenson, F. M. Schellenberg, A. C. Tam, and G. C. Bjorklund, “Continuous-wave Doppler-free two-photon frequency-modulation spectroscopy in Rb vapor,” Opt. Lett. 8, 27–29 (1983).
  36. L. S. Ma, L. E. Ding, and Z. Y. Bi, “Doppler-free two-photon modulation transfer spectroscopy in sodium dimers,” Appl. Phys. B 51, 233–237 (1990).
  37. G. J. Rosasco and W. S. Hurst, “Phase-modulated stimulated Raman spectroscopy,” J. Opt. Soc. Am. B 2, 1485–1496 (1985).
  38. J. H. Shirley, “Modulation transfer process in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
  39. J. Bialas, R. Blatt, W. Neuhauser, and P. E. Toschek, “Ultrasensitive detection of light absorption by few ions,” Opt. Commun. 59, 27–30 (1986).
  40. J. Ye, L.-S. Ma, and J. L. Hall, “Ultra-stable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178 (1997); J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colorado, 1997).
  41. R. L. Smith, “Practical solutions of the lock-in detection problem for Lorentz and dispersion resonance signals,” J. Opt. Soc. Am. 61, 1015–1022 (1971).
  42. J. L. Hall, J. Ye, L.-S. Ma, K. Vogel, and T. Dinneen, “Optical frequency standards: progress and applications,” in Laser Spectroscopy XIII, Y. Z. Wang, ed. (World Scientific, Singapore, 1997).
  43. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
  44. P. Fritschel and R. Weiss, “Frequency match of the Nd:YAG laser at 1.064 μm with a line in CO2,” Appl. Opt. 31, 1910–1912 (1992).
  45. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995); P. Jungner, M. Eickhoff, S. Swartz, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56) 32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151 (1995).
  46. L. S. Rothman and L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide. II,” J. Quantum Spectrosc. Radiat. Transf. 25, 505–524 (1981).
  47. U. J. Greiner and H. H. Klingerberg, “Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror,” Opt. Lett. 19, 1207–1209 (1994).
  48. M. Jacobson and R. W. Field, MIT, Cambridge, Mass. 02139 (private communications, 1996).
  49. M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996); R. C. Hilborn and C. L. Yuca, “Spectroscopic test of the symmetrization postulate for spin-0 nuclei,” Phys. Rev. Lett. 76, 2844–2847 (1996).
  50. L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive FM spectroscopy enhanced by a high finesse optical cavity: application to overtone transitions of C2H2 & C2HD,” J. Opt. Soc. Am. B (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited