OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 1 — Jan. 1, 1998
  • pp: 87–96

Hamiltonian dynamics of dispersion-managed breathers

J. Nathan Kutz, Philip Holmes, Stephen G. Evangelides, and James P. Gordon  »View Author Affiliations

JOSA B, Vol. 15, Issue 1, pp. 87-96 (1998)

View Full Text Article

Acrobat PDF (379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytic description is presented for the pulse dynamics in a dispersion-managed communications system in which the average dispersion is in the anomalous regime. A variational formalism reduces the governing equations to a planar Hamiltonian system for which a geometrical interpretation of the pulse dynamics is given. The reduced model gives a simple method for calculating the ideal enhanced initial power for a dispersion-managed breather and further exhibits a long-time periodic behavior, which is present in the full governing equations. Extensive numerical simulations verify the range of validity of the reduced equations.

© 1998 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(260.2030) Physical optics : Dispersion

J. Nathan Kutz, Philip Holmes, Stephen G. Evangelides, and James P. Gordon, "Hamiltonian dynamics of dispersion-managed breathers," J. Opt. Soc. Am. B 15, 87-96 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Naka, T. Matsuda, and S. Saito, “Optical RZ signal straight line transmission with dispersion compensation over 5220 km at 20 Gb/s and 2160 km at 2X20 Gb/s,” Electron. Lett. 32, 1694–1696 (1996).
  2. N. Edagawa, I. Morita, M. Susuki, S. Yamamoto, H. Taga, and S. Akiba, “20 Gb/s, 8100 km straight line single channel soliton based RZ transmission experiment using periodic dispersion compensation,” in European Conference on Optical Communications Proceedings (Institution of Electrical Engineers, Brussels, 1995), paper Th. A 3.5.
  3. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, “Enhanced power solitons in optical fibers with periodic dispersion management,” Electron. Lett. 32, 54–55 (1996).
  4. N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, “Energy-scaling characteristics of solitons in strongly dispersion-managed fibers,” Opt. Lett. 21, 1981–1983 (1996).
  5. C. Kurtzke, “Suppression of fiber nonlinearities by appropriate dispersion management,” IEEE Photonics Technol. Lett. 5, 1250–1253 (1993).
  6. R. W. Tkach, A. R. Chraplyvy, F. Forghieri, A. H. Gnauck, and R. M. Derosier, “4-Photon mixing and high-speed WDM systems,” J. Lightwave Technol. 13, 841–849 (1995).
  7. I. Gabitov and S. K. Turitsyn, “Breathing solitons in optical fiber links,” Pisma v JETP 63, 814–819 (1996).
  8. I. Gabitov, E. G. Shapiro, and S. K. Turitsyn, “Optical pulse dynamics in fiber links with dispersion compensation,” Opt. Commun. 134, 317–329 (1997).
  9. I. Gabitov, E. G. Shapiro, and S. K. Turitsyn, “Asymptotic breathing pulse in optical transmission system with dispersion compensation,” Phys. Rev. E 55, 3624–3633 (1997).
  10. E. A. Golovchenko, J. M. Jacob, A. N. Pilipetskii, C. R. Menyuk, and G. M. Carter, “Dispersion-managed solitons in a fiber loop with in-line filtering,” Opt. Lett. 22, 289–291 (1997).
  11. J. C. Bronski and J. N. Kutz, “Guiding-center pulse dynamics in nonreturn-to-zero (return-to-zero) communications systems with mean-zero dispersion,” J. Opt. Soc. Am. B 14, 903–911 (1997).
  12. J. C. Bronski and J. N. Kutz, “Asymptotic behavior of the nonlinear Schrödinger equation with a rapidly-varying, mean-zero dispersion,” Physica D 108, 315–329 (1997).
  13. A. Hasegawa and Y. Kodama, “Guiding-center soliton in optical fibers,” Opt. Lett. 15, 1443–1445 (1990).
  14. I. R. Gabitov and S. K. Turitsyn, “Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation,” Opt. Lett. 21, 327–329 (1996).
  15. L. F. Mollenauer, E. Lichtman, G. T. Harvey, M. J. Neubelt, and B. M. Nyman, “Demonstration of error-free soliton transmission over more than 15000km at 2.5 Gbit/s, single-channel, and over more than 11000km at 10 Gbit/s in 2-channel WDM,” Electron. Lett. 28, 792–794 (1992).
  16. M. Nakazawa, K. Susuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data-transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).
  17. A. M. Weiner, W. J. Tomlinson, R. N. Thurston, D. E. Leaird, J. P. Heritage, E. M. Kirschner, and R. J. Hawkins, “Experimental-observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
  18. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974), Chap. 14.
  19. D. Anderson, “Variational approach to nonlinear pulse propagation in optical fibers,” Phys. Rev. A 27, 3135–3145 (1983).
  20. J. N. Kutz, S. D. Koehler, L. Leng, and K. Bergman, “Analytic study of orthogonally polarized solitons interacting in highly birefringent optical fibers,” J. Opt. Soc. Am. B 14, 636–642 (1997).
  21. T. Ueda and W. L. Kath, “Dynamics of coupled solitons in nonlinear optical fibers,” Phys. Rev. A 42, 563–571 (1990).
  22. Q. Wang, P. K. A. Wai, C.-J. Chen, and C. R. Menuyk, “Numerical modeling of soliton-dragging logic gates,” J. Opt. Soc. Am. B 10, 2030–2039 (1993).
  23. D. J. Kaup, B. A. Malomed, and R. S. Tasgal, “Internal dynamics of a vector soliton in a nonlinear optical fiber,” Phys. Rev. E 48, 3049–3053 (1993).
  24. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 1980), Chap. 2.
  25. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, New York, 1976), Chap. 1.
  26. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9, 91–97 (1992).
  27. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems (Wiley, New York, 1986), Chap. 9.
  28. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamics Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited