OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 10 — Oct. 1, 1998
  • pp: 2560–2565

Permanently poled fully functionalized photorefractive polyesters

S. Schloter, U. Hofmann, K. Hoechstetter, G. Bäuml, D. Haarer, K. Ewert, and C.-D. Eisenbach  »View Author Affiliations

JOSA B, Vol. 15, Issue 10, pp. 2560-2565 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Crystallization and phase separation are severe degradation mechanisms of photorefractive (PR) guest–host systems. Additionally, the response time of PR guest–host systems is in some cases limited by a large contribution of slow chromophore reorientation to the PR effect. The synthesis of fully functionalized systems with glass transition temperatures well above room temperature is a way to restrict these degradation mechanisms and to reduce the PR effect to a pure charge generation and transport phenomenon. We present novel, fully functionalized PR polymers based on polyester. Permanent poling of the systems is demonstrated and quantitatively investigated. The PR properties are measured by degenerate four-wave mixing and two-beam coupling experiments as a function of the external electric field and the degree of permanent poling. One of the systems shows response times of approximately 200 ms with Δn1×10-3. To our knowledge, this work presents the first characterization of PR efficiencies for fully functionalized polymers as a function of the permanent Pockels coefficient χ(2)(-ω;ω, 0).

© 1998 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.5320) Materials : Photorefractive materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics

S. Schloter, U. Hofmann, K. Hoechstetter, G. Bäuml, D. Haarer, K. Ewert, and C.-D. Eisenbach, "Permanently poled fully functionalized photorefractive polyesters," J. Opt. Soc. Am. B 15, 2560-2565 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585 (1997). [CrossRef]
  2. K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994). [CrossRef]
  3. O. Zobel, M. Eckl, P. Strohriegl, and D. Haarer, “A polysiloxane-based photorefractive polymer with high optical gain and diffraction efficiency,” Adv. Mater. 7, 911 (1995). [CrossRef]
  4. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515 (1997). [CrossRef]
  5. F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).
  6. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320 (1994). [CrossRef]
  7. P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996). [CrossRef] [PubMed]
  8. G. P. Wiederrecht, B. A. Yoon, and M. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794 (1995). [CrossRef]
  9. S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer, “High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores,” J. Opt. Soc. Am. B 15, 2473 (1998). [CrossRef]
  10. R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996). [CrossRef]
  11. Z. Sekkat, J. Wood, E. F. Aust, W. Knoll, W. Volksen, and R. D. Miller, “Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain,” J. Opt. Soc. Am. B 13, 1713 (1996). [CrossRef]
  12. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994). [CrossRef]
  13. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734 (1990). [CrossRef]
  14. G. Pfister, “Hopping transport in molecularly doped organic polymer,” Phys. Rev. B 16, 3676 (1977). [CrossRef]
  15. X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629 (1996). [CrossRef]
  16. K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers,” Makromol. Chem. 10, 477 (1989).
  17. Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68 (1994).
  18. S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997). [CrossRef]
  19. M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited