OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 10 — Oct. 1, 1998
  • pp: 2566–2572

Theoretical investigation of the forward phase-matched geometry for degenerate four-wave mixing spectroscopy

Thomas A. Reichardt, Robert P. Lucht, Paul M. Danehy, and Roger L. Farrow  »View Author Affiliations


JOSA B, Vol. 15, Issue 10, pp. 2566-2572 (1998)
http://dx.doi.org/10.1364/JOSAB.15.002566


View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine theoretically the degenerate four-wave mixing (DFWM) signal intensities and line shapes obtained with the forward phase-matched geometry in which all beams propagate in the same direction and compare the results to those of the phase-conjugate geometry with counterpropagating pump beams. To examine the forward phase-matched geometry, we modify a theoretical approach used previously to calculate phase-conjugate DFWM signal intensities. This theoretical approach, which involves numerical integration of the time-dependent density-matrix equations, is validated for the forward phase-matched geometry by comparison of our calculated line shapes to both a perturbative solution and to experimental data. This methodology is then used to compare the signal intensities and line shapes obtained with the forward phase-matched geometry and the phase-conjugate geometry in the perturbative (low laser power) and saturated (high laser power) regimes. In the perturbative regime the forward phase-matched signal exhibits less sensitivity to the Doppler linewidth. At pump laser intensities approximately equal to the saturation intensity the signal for the forward phase-matched geometry is stronger than that for the phase-conjugate geometry for primarily Doppler-broadened resonances, assuming the same probe volume for both geometries. These advantages warrant further investigations employing the forward phase-matched configuration for DFWM measurements of gas-phase species.

© 1998 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(300.2570) Spectroscopy : Four-wave mixing
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing

Citation
Thomas A. Reichardt, Robert P. Lucht, Paul M. Danehy, and Roger L. Farrow, "Theoretical investigation of the forward phase-matched geometry for degenerate four-wave mixing spectroscopy," J. Opt. Soc. Am. B 15, 2566-2572 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-10-2566

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited