OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 10 — Oct. 1, 1998
  • pp: 2586–2592

Theoretical and experimental study of spatial resolution in quantum-well spatial light modulators

Carlos De Matos, Laurent Bramerie, and Alain Le Corre  »View Author Affiliations


JOSA B, Vol. 15, Issue 10, pp. 2586-2592 (1998)
http://dx.doi.org/10.1364/JOSAB.15.002586


View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The spatial resolution of optically addressed spatial light modulators operating in longitudinal-field Stark geometry is reduced mainly by the lateral diffusion of carriers parallel to the plane of the wells. We describe two-dimensional transport modeling within a self-consistently small amplitude approximation. An analytical expression for the carrier’s spatial modulation rate is obtained and demonstrates that the spatial resolution is characterized by the velocity anisotropy. We compare our analytical model with experimental results obtained for a GaAs/AlGaAs system (devices operating at 0.8-μm wavelength) and for a InGaAs/InGaAsP system (devices operating at 1.55-μm wavelength). Good agreement between the theoretical and the experimental results is achieved.

© 1998 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(160.6000) Materials : Semiconductor materials
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.1950) Optical devices : Diffraction gratings
(230.2090) Optical devices : Electro-optical devices
(230.6120) Optical devices : Spatial light modulators

Citation
Carlos De Matos, Laurent Bramerie, and Alain Le Corre, "Theoretical and experimental study of spatial resolution in quantum-well spatial light modulators," J. Opt. Soc. Am. B 15, 2586-2592 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-10-2586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993). [CrossRef]
  2. C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997). [CrossRef]
  3. W. S. Rabinovitch, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044 (1995). [CrossRef]
  4. I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, “High-efficiency Stark-geometry photorefractive quantum well with intrinsic cladding layers,” Appl. Phys. Lett. 68, 517 (1996). [CrossRef]
  5. A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High speed joint-transform optical image correlator using GaAs/AlGaAs semi-insulating multiple quantum wells and laser diodes,” Opt. Lett. 18, 906 (1993). [CrossRef]
  6. M. C. Nuss, M. Li, T. H. Chiu, A. M. Wiener, and A. Partovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664 (1994). [CrossRef] [PubMed]
  7. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718 (1997). [CrossRef] [PubMed]
  8. P. Tayebati, C. Hantzis, E. Canoglu, and R. N. Stacks, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446 (1997). [CrossRef]
  9. S. L. Smith and L. Hesselink, “Transport modeling of multiple quantum well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076 (1997). [CrossRef]
  10. I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p–i–n diode quantum well spatial light modulators,” Appl. Phys. Lett. 67, 1408 (1995). [CrossRef]
  11. C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996). [CrossRef]
  12. S. L. Smith and L. Hesselink, “Analytical model for grating dynamics in surface-charge-dominated pockels readout optical modulator devices,” J. Opt. Soc. Am. B 11, 1878 (1994). [CrossRef]
  13. E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996). [CrossRef]
  14. W. R. Roach, “Resolution of electro-optic light valves,” IEEE Trans. Electron Devices 21, 453 (1974). [CrossRef]
  15. A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997). [CrossRef]
  16. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, New York, 1984).
  17. C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997). [CrossRef]
  18. D. D. Nolte and M. R. Melloch, Photorefractive Effects and Materials (Kluwer, Dordrecht, The Netherlands, 1995), Chap. 7.
  19. D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: application to photorefractive quantum wells,” Opt. Commun. 115, 606 (1995). [CrossRef]
  20. R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited