OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2654–2659

Interferometric investigation of photonic band-structure effects in pure and doped colloidal crystals

Björn T. Rosner, Garrett J. Schneider, and George H. Watson  »View Author Affiliations


JOSA B, Vol. 15, Issue 11, pp. 2654-2659 (1998)
http://dx.doi.org/10.1364/JOSAB.15.002654


View Full Text Article

Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Mach–Zehnder interferometer was developed for accurately measuring relative phase shifts of light propagating in photonic colloidal crystals deep into the stop bands. These phase shifts can be used to determine the change in index of refraction and the optical dispersion relation from photonic band structure near the band edges. Phase measurements of colloidal crystals incorporating an impurity peak in the transmission spectrum are also presented.

© 1998 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(050.5080) Diffraction and gratings : Phase shift
(290.3030) Scattering : Index measurements
(350.2460) Other areas of optics : Filters, interference

Citation
Björn T. Rosner, Garrett J. Schneider, and George H. Watson, "Interferometric investigation of photonic band-structure effects in pure and doped colloidal crystals," J. Opt. Soc. Am. B 15, 2654-2659 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-11-2654


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
  3. E. Yablonovitch, “Photonic bandgap structures,” J. Opt. Soc. Am. B 10, 283 (1993).
  4. E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443 (1993).
  5. E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173 (1994).
  6. W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).
  7. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699 (1996).
  8. U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).
  9. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).
  10. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143 (1997).
  11. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
  12. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).
  13. C. C. Cheng and A. Scherer, “Fabrication of photonic band-gap crystals,” J. Vac. Sci. Technol. 13, 2696 (1995).
  14. C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystal operating at optical wavelengths,” Phys. Scr. T68, 17 (1996).
  15. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
  16. S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466 (1994).
  17. P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25 (1983).
  18. N. A. Clark, A. J. Hurd, and B. J. Ackerson, “Single colloidal crystals,” Nature (London) 281, 57 (1979).
  19. İ. İ. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315 (1996).
  20. R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503 (1997).
  21. W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).
  22. R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal crystals,” Phys. Rev. B 57, 3701 (1998).
  23. Duke Scientific Corporation, 2463 Faber Place, Palo Alto, Calif. 94303.
  24. P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. (France) 42, 53 (1981).
  25. J. B. Bateman, E. J. Weneck, and D. C. Eshler, “Determination of particle size and concentration from spectrophotometric transmission,” J. Colloid Sci. 14, 308 (1959).
  26. R. H. Boundy and R. F. Boyer, Styrene: Its Polymers, Copolymers and Derivatives (Hafner, New York, 1965).
  27. I. Thormahlen, J. Straub, and U. Grigul, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933 (1985).
  28. İ. İ. Tarhan, M. P. Zinkin, and G. H. Watson, “Interferometric technique for the measurement of photonic band structure in colloidal crystals,” Opt. Lett. 20, 1571 (1995).
  29. P. Hariharan, “Modified Mach–Zehnder interferometer,” Appl. Opt. 8, 1925 (1969).
  30. Omega Optical Inc., P.O. Box 573, Brattleboro, Vermont 05302.
  31. İ. İ. Tarhan, “Investigation of optical photonic band structure in fcc colloidal crystals,” Ph.D. dissertation (U. Delaware, Newark, Del., 1996).
  32. İ. İ. Tarhan and G. H. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B 54, 7593 (1996).
  33. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).
  34. R. D. Pradhan, İ. İ. Tarhan, and G. H. Watson, “Impurity modes in the optical stop bands of doped colloidal crystals,” Phys. Rev. B 54, 13721 (1996).
  35. S. A. Asher, J. Holtz, L. Liu, and Z. Wu, “Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,” J. Am. Chem. Soc. 116, 4997 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited