OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2689–2699

Theoretical investigation of threshold properties of purely and partly gain-coupled distributed-feedback semiconductor lasers with stepwise constant coupling coefficients

Thierry Fessant  »View Author Affiliations


JOSA B, Vol. 15, Issue 11, pp. 2689-2699 (1998)
http://dx.doi.org/10.1364/JOSAB.15.002689


View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A basic analysis of complex-coupled distributed-feedback semiconductor lasers with stepwise constant coupling coefficients κ is derived. Solving coupled-wave equations at threshold reveals that the longitudinal distribution of κ as well as the relative amount of index and gain coupling plays a decisive role in the modal and spatial (internal fields) properties of complex-coupled structures. The standing-wave effect, extended to multisection devices, and the concept of apparent absorption induced by spatially dependent κ can explain the discrepancies between uniformly and nonuniformly complex-coupled structures. The complex-coupling profile is also discussed with respect to its influence on spatial hole burning and threshold gain margin, the usual criteria for optimizing sources in optical fiber telecommunication systems.

© 1998 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.1480) Optical devices : Bragg reflectors

Citation
Thierry Fessant, "Theoretical investigation of threshold properties of purely and partly gain-coupled distributed-feedback semiconductor lasers with stepwise constant coupling coefficients," J. Opt. Soc. Am. B 15, 2689-2699 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-11-2689


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, and H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. QE-23, 804–814 (1987). [CrossRef]
  2. J. E. Whiteaway, G. H. B. Thompson, A. J. Collar, and C. J. Armistead, “The design and assessment of λ/4 shifted DFB structures,” IEEE J. Quantum Electron. 25, 1261–1279 (1989). [CrossRef]
  3. T. Fessant and J. Le Bihan, “Analysis of the spectral properties of multisection shifted DFB lasers with inhomogeneous coupling coefficient,” presented at the Semiconductor and Integrated Opto-Electronics Conference, SIOE’95, Cardiff, Wales, April 1995.
  4. B. S. K. Lo and H. Ghafouri-Shiraz, “Spectral characteristics of DFB laser diodes with distributed coupling coefficient,” J. Lightwave Technol. 13, 200–212 (1995). [CrossRef]
  5. T. Kimura and A. Sugimura, “Coupled phase-shift DFB semiconductor lasers for narrow linewidth operation,” IEEE J. Quantum Electron. 25, 678–683 (1989). [CrossRef]
  6. S. Ogita, Y. Kotaki, H. Ishikawa, and H. Imai, “Optimum design for multiple phase shift distributed feedback laser,” Electron. Lett. 24, 731–732 (1988). [CrossRef]
  7. J. I. Kinoshita and K. Matsumoto, “Yield analysis of SLM DFB lasers with axially-flattened internal field,” IEEE J. Quantum Electron. 25, 1324–1332 (1989). [CrossRef]
  8. H. Olesen, J. Salzman, B. Jonsson, and B. Tromborg, “Single mode stability of DFB lasers with longitudinal Bragg detuning,” IEEE Photonics Technol. Lett. 7, 461–463 (1995). [CrossRef]
  9. J. Salzman, H. Olesen, A. Moller-Larsen, O. Albrektsen, J. Hanberg, J. Norregaard, B. Jonsson, and B. Tromborg, “Distributed feedback lasers with an S-bent waveguide for high-power single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 1, 346–355 (1995). [CrossRef]
  10. H. Soda, K. Wakao, H. Sudo, T. Tanahashi, and H. Imai, “GaInAsP/InP phase-adjusted distributed feedback lasers with a step-like nonuniform stripe width structure,” Electron. Lett. 20, 1016–1018 (1984). [CrossRef]
  11. E. Kapon, A. Hardy, and A. Katzir, “The effect of complex coupling coefficients on distributed feedback lasers,” IEEE J. Quantum Electron. QE-18, 66–71 (1982). [CrossRef]
  12. G. Morthier, P. Vankwikelberge, K. David, and R. Baets, “Improved performance of AR-coated DFB lasers by the introduction of gain-coupling,” IEEE Photonics Technol. Lett. 2, 170–172 (1990). [CrossRef]
  13. D. A. Cardimona, M. P. Sharma, V. Kovanis, and A. Gavrielides, “Dephased index and gain coupling in distributed feedback lasers,” IEEE J. Quantum Electron. 31, 60–66 (1995). [CrossRef]
  14. K. Y. Kwon, “Effect of grating phase difference on single-mode yield in complex-coupled DFB lasers with gain and index gratings,” IEEE J. Quantum Electron. 32, 1937–1949 (1996). [CrossRef]
  15. Y. Boucher, “Non-reciprocal effects of complex-coupled distributed-feedback structures resulting from the phase difference between the coupling constants,” Opt. Commun. 136, 410–414 (1997). [CrossRef]
  16. K. David, J. Buus, and R. G. Baets, “Basic analysis of AR-coated, partly gain-coupled DFB lasers: the standing wave effect,” IEEE J. Quantum Electron. 28, 427–433 (1992). [CrossRef]
  17. F. Randone and I. Montrosset, “Analysis and simulation of gain-coupled distributed feedback semiconductor lasers,” IEEE J. Quantum Electron. 31, 1964–1973 (1995). [CrossRef]
  18. B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, “Instabilities and non-linear L-I characteristics in complex-coupled DFB lasers with antiphase gain and index gratings,” IEEE J. Quantum Electron. 32, 839–850 (1996). [CrossRef]
  19. J. Chen, A. Champagne, R. Maciejko, and T. Makino, “Improvement of single-mode gain margin in gain-coupled DFB lasers,” IEEE J. Quantum Electron. 33, 33–40 (1997). [CrossRef]
  20. W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers,” IEEE J. Quantum Electron. QE-13, 134–141 (1977). [CrossRef]
  21. L. M. Zhang, S. F. Yu, M. C. Nowell, D. D. Marcenac, J. E. Carroll, and R. G. S. Plumb, “Dynamic analysis of radiation side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model,” IEEE J. Quantum Electron. 30, 1389–1395 (1994). [CrossRef]
  22. R. Bonello and I. Montrosset, “Analysis of multisection and multielectrode semiconductor lasers,” J. Lightwave Technol. 10, 1890–1900 (1992). [CrossRef]
  23. G. P. Agrawal and N. K. Dutta, Long Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
  24. Y. Boucher, O. Dellea, and J. Le Bihan, “Quasi-periodic complex-coupled distributed feedback structures with an exponential-like gradient of coupling,” IEEE J. Quantum Electron. 33, 2137–2145 (1997). [CrossRef]
  25. H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  26. L. Poladian, “Resonance mode expansions and exact solutions for nonuniform gratings,” Phys. Rev. E 54, 2963–2975 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited