OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2700–2705

High-temperature persistent spectral hole burning of Eu3+ ions in silicate glasses: new room-temperature hole-burning materials

Koji Fujita, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga  »View Author Affiliations


JOSA B, Vol. 15, Issue 11, pp. 2700-2705 (1998)
http://dx.doi.org/10.1364/JOSAB.15.002700


View Full Text Article

Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Persistent spectral hole burning has been observed above 77 K for the 5D07F0 transition of Eu3+ in various silicate glasses melted in a nitrogen atmosphere. A striking and novel feature is that the persistent hole can be burned at room temperature. The spectral hole are undiminished in intensity for 2 h in the dark. The formation of a hole with high thermal stability is accomplished only by a change in the melting atmosphere. At 77 K the efficiency of the hole burning is greater for sodium silicate glasses than for sodium aluminosilicate glasses. A possible hole-burning mechanism, i.e., photoinduced reduction of Eu3+, is suggested.

© 1998 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.2900) Materials : Optical storage materials
(160.5690) Materials : Rare-earth-doped materials
(300.6320) Spectroscopy : Spectroscopy, high-resolution

Citation
Koji Fujita, Katsuhisa Tanaka, Kazuyuki Hirao, and Naohiro Soga, "High-temperature persistent spectral hole burning of Eu3+ ions in silicate glasses: new room-temperature hole-burning materials," J. Opt. Soc. Am. B 15, 2700-2705 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-11-2700


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), Vol. 21, p. 51.
  2. R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole Burning: Science and Application, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.
  3. M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752 (1994).
  4. M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D07F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
  5. R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
  6. K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
  7. K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
  8. A. Kurita, T. Kushida, T. Izumitani, and M. Matsukawa, “Persistent spectral hole burning in Sm2+-doped fluoride glasses,” Opt. Lett. 19, 314 (1994).
  9. M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
  10. H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
  11. Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
  12. M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
  13. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
  14. R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
  15. Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
  16. R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
  17. K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
  18. K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
  19. K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
  20. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
  21. K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
  22. M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
  23. P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
  24. K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
  25. A. Winnacker, R. M. Shelby, and R. M. Macfarlane, “Photon-gated hole burning: a new mechanism using two-step photoionization,” Opt. Lett. 10, 350 (1985).
  26. D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
  27. Y. Yamada and S. Ohno, “Photoreduction of solid europium chloride in KBr by visible two-photon excitation,” Chem. Lett. 465 (1991).
  28. S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
  29. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited