OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2716–2720

Two-wave mixing gain enhancement in photorefractive CdZnTe:V by optically stimulated electron– hole resonance

P. Pogany, H. J. Eichler, and M. Hage Ali  »View Author Affiliations


JOSA B, Vol. 15, Issue 11, pp. 2716-2720 (1998)
http://dx.doi.org/10.1364/JOSAB.15.002716


View Full Text Article

Acrobat PDF (179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large photorefractive two-wave mixing gain in CdZnTe:V at a 1.5-μm wavelength is demonstrated with an external dc field and a third incoherent stimulating beam of 1.3-μm wavelength. Resonant gain enhancement depending on the intensity of the incoherent illumination was observed. The maximum gain coefficient of 5.5 cm−1 is comparable with the value obtained with an ac field.

© 1998 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(190.0190) Nonlinear optics : Nonlinear optics
(190.7070) Nonlinear optics : Two-wave mixing
(200.3050) Optics in computing : Information processing
(260.5740) Physical optics : Resonance
(350.7420) Other areas of optics : Waves

Citation
P. Pogany, H. J. Eichler, and M. Hage Ali, "Two-wave mixing gain enhancement in photorefractive CdZnTe:V by optically stimulated electron– hole resonance," J. Opt. Soc. Am. B 15, 2716-2720 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-11-2716


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. M. Davidson and C. T. Field, “Coherent homodyne optical communication receivers with photorefractive optical beam combiners,” J. Lightwave Technol. 12, 1207–1223 (1994).
  2. P. Pogany, Y. Ding, M. Sprenger, S. Diez, H. G. Weber, and H. J. Eichler, “Photorefractive coupling of semiconductor laser amplifiers for 1.3 μm wavelength,” Electron. Lett. 33, 721–722 (1997).
  3. D. Herve, B. Mainguet, S. Pinel, R. Coquille, A. Poudoulec, and F. Delorme, “Narrow-band WDM spectrum analyser without mechanical tuning,” Electron. Lett. 32, 838–839 (1996).
  4. G. Martel, N. Wolffer, J. Y. Moisan, and P. Gravey, “Double-phase-conjugate mirror in CdTe:V with elimination of conical diffraction at 1.54 μm,” Opt. Lett. 20, 937–939 (1995).
  5. L.-A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, “Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293–300 (1996).
  6. P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
  7. R. N. Schwartz, M. Ziari, and S. Trivedi, “Electron paramagnetic resonance and an optical investigation of photorefractive vanadium-doped CdTe,” Phys. Rev. B 49, 5274–5282 (1994).
  8. G. Bremond, A. Zerrai, G. Marrakchi, A. Audia, Y. Marfaing, R. Triboulet, M. C. Busch, J. M. Koebel, M. Hage-Ali, P. Siffert, and J.-Y. Moisan, “Characterization and identification of the deep levels in V doped CdTe and their relationship with the photorefractive properties,” Opt. Mater. 4, 246–251 (1995).
  9. L.-A. de Montmorillon, P. Delaye, G. Roosen, H. Bou Rjeily, F. Ramaz, B. Briat, J. G. Gies, J. P. Zielinger, M. Tapiero, H. J. von Bardeleben, T. Arnoux, and J. C. Launay, “Correlations between microscopic properties and photorefractive response for vanadium-doped CdTe,” J. Opt. Soc. Am. B 13, 2341–2351 (1996).
  10. P. Christmann, B. K. Meyer, J. Kreissl, R. Schwarz, and K. W. Benz, “Vanadium in CdTe: an electron-paramagnetic-resonance study,” Phys. Rev. B 53, 3634–3637 (1996).
  11. H. J. von Bardeleben, C. Miesner, J. Monge, J. C. Launay, and X. Launay, “An electron paramagnetic resonance and magneto-optical study of vanadium in ZnxCd1−xTe:V,” Semicond. Sci. Technol. 11, 58–62 (1996).
  12. R. N. Schwartz, C.-C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, P. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
  13. J.-Y. Moisan, N. Wolffer, O. Moine, P. Gravey, G. Martel, A. Audia, E. Repka, Y. Marfaing, and R. Triboulet, “Characterization of photorefractive CdTe:V: high two-wave mixing gain with an optimum low-frequency periodic external electric field,” J. Opt. Soc. Am. B 11, 1655–1667 (1994).
  14. B. Imbert, H. Rajbenbach, S. Mallick, J. P. Herriau, and J. P. Huignard, “High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals,” Opt. Lett. 13, 327–329 (1988).
  15. G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798–3813 (1989).
  16. J. C. Launay, V. Mazoyer, M. Tapiero, J. P. Zielinger, Z. Guellil, P. Delaye, and G. Roosen, “Growth, spectroscopic and photorefractive investigation of vanadium-doped cadmium telluride,” Appl. Phys. A 55, 33–40 (1992).
  17. J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
  18. J.-Y. Moisan, P. Gravey, G. Martel, N. Wolffer, A. Audia, Y. Marfaing, R. Triboulet, M. C. Busch, M. Hage-Ali, J. M. Koebel, and P. Siffert, “Behaviour of hole and electron dominated photorefractive CdTe:V crystals under external continuous or periodic electric field,” Opt. Mater. 4, 219–223 (1995).
  19. C. Ozkul, G. Picoli, P. Gravey, and J. Le Rouzic, “Energy transfer in photorefractive InP:Fe crystals using an auxiliary incoherent beam and negative thermal gradient,” Opt. Commun. 30, 397–402 (1991).
  20. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
  21. A. Bledowski, J. Otten, and K. H. Ringhofer, “Photorefractive hologram writing with modulation 1,” Opt. Lett. 16, 672–674 (1991).
  22. T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
  23. J. G. Murillo, L. F. Magana, M. Carrascosa, and F. Agullo-Lopez, “Effects of light modulation on grating phase shifts in photorefractive recording,” Opt. Commun. 139, 81–84 (1997).
  24. J. V. Alvarez-Bravo, M. Carrascosa, and L. Arizmendi, “Experimental effects of light intensity modulation on the recording and erasure of holographic gratings in BSO crystals,” Opt. Commun. 103, 22–28 (1993).
  25. J. E. Millerd, E. M. Garmire, and M. B. Klein, “Investigation of photorefractive self-pumped phase-conjugate mirrors in the presence of loss and high modulation depth,” J. Opt. Soc. Am. B 9, 1499–1506 (1992).
  26. G. A. Brost, “Photorefractive grating formations at large modulation with alternating electric field,” J. Opt. Soc. Am. B 9, 1454–1460 (1992).
  27. A. Marrakchi, “Photorefractive spatial light modulation based on enhanced self-diffraction in sillenite crystals,” Opt. Lett. 13, 654–656 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited