OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 11 — Nov. 1, 1998
  • pp: 2763–2768

Bandwidth study of volume holography in photorefractive InP:Fe for femtosecond pulse readout at 1.5 μm

Y. Ding, D. D. Nolte, Z. Zheng, A. Kanan, A. M. Weiner, and G. A. Brost  »View Author Affiliations

JOSA B, Vol. 15, Issue 11, pp. 2763-2768 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Bragg selectivity of volume holograms makes them not well suited for many Fourier imaging processing applications in the space domain because they perform the function of a spatial filter and limit the field of view. Similarly, for femtosecond pulse holography they reduce the spectral bandwidth of the diffracted signal. However, we show both theoretically and experimentally that it is much easier in the frequency domain than in the space domain to achieve a large enough diffraction bandwidth of volume holograms for the bandwidth of 100-fs pulses to be used for frequency-domain femtosecond pulse shaping. The experiments were performed by nondegenerate four-wave mixing in photorefractive InP:Fe with femtosecond readout at 1.5 μm.

© 1998 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(320.5540) Ultrafast optics : Pulse shaping

Y. Ding, D. D. Nolte, Z. Zheng, A. Kanan, A. M. Weiner, and G. A. Brost, "Bandwidth study of volume holography in photorefractive InP:Fe for femtosecond pulse readout at 1.5 μm," J. Opt. Soc. Am. B 15, 2763-2768 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563 (1988). [CrossRef]
  2. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908 (1992). [CrossRef]
  3. C. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19, 737 (1994). [CrossRef] [PubMed]
  4. K. Ema, “Real-time ultrashort pulse shaping and pulse shape measurement using a dynamic grating,” Jpn. J. Appl. Phys., Part 2 30, L2046 (1991). [CrossRef]
  5. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988, 1989), Vols. 1 and 2.
  6. J. Heanue, M. Bashaw, and L. Hesselink, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611 (1993). [CrossRef]
  7. R. Muller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241 (1994). [CrossRef]
  8. R. A. Athale and K. Raj, “Fourier-plane filtering by a thick grating: a space–bandwidth analysis,” Opt. Lett. 17, 880 (1992). [CrossRef]
  9. M. G. Nicholson, I. R. Cooper, M. W. McCall, and C. R. Petts, “Simple computational model of image correlation by four-wave mixing in photorefractive media,” Appl. Opt. 26, 278 (1987). [CrossRef] [PubMed]
  10. L. Pichon and J. P. Huignard, “Dynamic joint-Fourier-transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277 (1981). [CrossRef]
  11. F. T. S. Yu, S. Wu, S. Rajan, and D. A. Gregory, “Compact joint transform correlator with a thick photorefractive crystal,” Appl. Opt. 31, 2416 (1992). [CrossRef] [PubMed]
  12. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994). [CrossRef] [PubMed]
  13. D. D. Nolte, Q. N. Wang, and M. R. Melloch, “Robust infrared gratings in photorefractive quantum wells generated by an above-band-gap laser,” Appl. Phys. Lett. 58, 2067 (1991). [CrossRef]
  14. K. Oba, P. C. Sun, and Y. Fainman, “Nonvolatile photorefractive spectral holography for time domain storage of femtosecond pulses,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 213–214.
  15. K. Oba, P. C. Sun, and Y. Fainman, “Nonvolatile photorefractive spectral holography,” Opt. Lett. 23, 915 (1998). [CrossRef]
  16. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, and Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728 (1995). [CrossRef] [PubMed]
  17. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718 (1997). [CrossRef] [PubMed]
  18. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge-enhancement of time-domain images,” Opt. Lett. 22, 1101 (1997). [CrossRef] [PubMed]
  19. J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990). [CrossRef]
  20. H. J. Eichler, Y. Ding, and B. Smandek, “Two-wave mixing in InP:Fe at 1064 nm by linear and quadratic photorefractive effect,” Opt. Commun. 94, 127 (1992). [CrossRef]
  21. N. Wolffer, P. Gravey, G. Picoli, and V. Vieux, “Double phase conjugated mirror and double color pumped oscillator using band-edge photorefractivity in InP:Fe,” Opt. Commun. 89, 17 (1992). [CrossRef]
  22. Y. Ding and H. J. Eichler, “Crystal orientation dependence of the photorefractive four-wave mixing in compound semiconductors of symmetry group 4¯3m,” Opt. Commun. 110, 456 (1994). [CrossRef]
  23. G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989). [CrossRef]
  24. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969). [CrossRef]
  25. C. Ozkul, G. Picoli, P. Gravey, and N. Wolffer, “High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields,” Appl. Opt. 29, 2711 (1990). [CrossRef] [PubMed]
  26. H. J. Eichler, P. Günter, and D. W. Wohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  27. O. J. Glembocki and H. Piller, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), p. 503.
  28. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), p. 65.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited