OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 12 — Dec. 1, 1998
  • pp: 2868–2876

Reduction of light-induced refractive-index changes by decreased modulation of light patterns in photorefractive crystals

U. van Stevendaal, K. Buse, H. Malz, H. Veenhuis, and E. Krätzig  »View Author Affiliations

JOSA B, Vol. 15, Issue 12, pp. 2868-2876 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In holographic experiments many photorefractive crystals show refractive-index changes much smaller than one would expect from the known electro-optic coefficients and space-charge fields. We show that degradation of the interference pattern is the origin of this effect. The degree of modulation of a light grating in photorefractive crystals is measured by three methods and compared with the modulation of the grating of the incident light. All methods, measurement of the amplitudes of fundamental and second-order gratings, of the grating amplitudes in a crystal with and without another crystal in front of it, and of the drift currents through an inhomogeneously illuminated sample, yield consistent results: In lithium niobate there is almost no degradation of the light pattern. However, in our barium titanate and potassium tantalate–niobate samples the degree of modulation is smaller, and the reduction factor is 0.55 and 0.60, respectively. Inhomogeneities of refractive-index changes are shown to be the origin of the effect.

© 1998 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(160.2260) Materials : Ferroelectrics
(160.5320) Materials : Photorefractive materials
(210.4810) Optical data storage : Optical storage-recording materials

U. van Stevendaal, K. Buse, H. Malz, H. Veenhuis, and E. Krätzig, "Reduction of light-induced refractive-index changes by decreased modulation of light patterns in photorefractive crystals," J. Opt. Soc. Am. B 15, 2868-2876 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Günter and J.-P. Huignard, Photorefractive Effects and Materials, P. Günter and J.-P. Huignard, eds., Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
  2. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915 (1993). [CrossRef] [PubMed]
  3. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375 (1996). [CrossRef] [PubMed]
  4. J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World 32(11), 81 (1996).
  5. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. (Int. Ed.) 273, 70 (1995).
  6. F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983). [CrossRef]
  7. K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273 (1997). [CrossRef]
  8. K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391 (1997). [CrossRef]
  9. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949,  961 (1979).
  10. S. Loheide, H. Hesse, E. Krätzig, and K. H. Ringhofer, “Photorefractive properties of tetragonal potassium tantalate–niobate crystals,” Opt. Mater. 2, 65 (1993). [CrossRef]
  11. S. Loheide, S. Riehemann, R. Pankrath, and E. Krätzig, “Influence of Fe doping on the photorefractive properties of KTa1−xNbxO3,” Ferroelectrics 160, 213 (1994). [CrossRef]
  12. S. Loheide, S. Riehemann, and E. Krätzig, “Beam-coupling in tetragonal potassium tantalate–niobate crystals,” Appl. Phys. A 58, 343 (1994). [CrossRef]
  13. C. Medrano, E. Voit, P. Amrhein, and P. Günter, “Optimization of the photorefractive properties of KNbO3 crystals,” J. Appl. Phys. 64, 4668 (1988). [CrossRef]
  14. R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989). [CrossRef]
  15. L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989). [CrossRef]
  16. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941 (1994). [CrossRef]
  17. K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461 (1996). [CrossRef]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969). [CrossRef]
  19. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation of congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373 (1984). [CrossRef]
  20. M. Zgonik, K. Nakagawa, and P. Günter, “Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 12, 1416 (1995). [CrossRef]
  21. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Krätzig, “Refractive indices of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87 (1993). [CrossRef]
  22. D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited