OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 12 — Dec. 1, 1998
  • pp: 2979–2985

Adiabatic Bragg soliton compression in nonuniform grating structures

G. Lenz and B. J. Eggleton  »View Author Affiliations

JOSA B, Vol. 15, Issue 12, pp. 2979-2985 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adiabatic soliton compression is an attractive optical pulse compression scheme that relies on monotonic decreasing of the fiber dispersion along the soliton’s propagation path. This scheme requires kilometers of specialty fiber, and only a few dispersion profiles are practically feasible. We propose adiabatic soliton compression in a nonuniform fiber Bragg grating. The Bragg soliton propagates in the passband of a grating, where one or more of its parameters (e.g., the grating pitch) varies along the propagation direction. The capability of manufacturing almost arbitrary grating profiles and hence engineering practically any dispersion profile makes this all-fiber pulse compressor, which is to our knowledge novel, a very versatile component. Additionally, the large dispersion in the spectral vicinity of the grating stop band leads to very short devices (tens of centimeters as opposed to kilometers).

© 1998 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(230.1480) Optical devices : Bragg reflectors
(320.0320) Ultrafast optics : Ultrafast optics
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

G. Lenz and B. J. Eggleton, "Adiabatic Bragg soliton compression in nonuniform grating structures," J. Opt. Soc. Am. B 15, 2979-2985 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, “Solitons in high bit-rate, long-distance transmission,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997).
  2. See, e.g., N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, “Enhanced power solitons in optical fibres with periodic dispersion management,” Electron. Lett. 32, 54–55 (1996). [CrossRef]
  3. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991); P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991). [CrossRef]
  4. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications IIIA, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), and references therein.
  5. See, e.g., S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression,” Electron. Lett. 30, 433–435 (1994). [CrossRef]
  6. J. D. Moores, “Nonlinear compression of chirped solitary waves with and without phase modulation,” Opt. Lett. 21, 555–557 (1996). [CrossRef] [PubMed]
  7. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouelette, “Dispersion compensation over 100 km at 10 Gbit/s using a fiber grating in transmission,” Electron. Lett. 32, 1610–1611 (1996). [CrossRef]
  8. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse compression,” J. Lightwave Technol. 15, 1303–1313 (1997). [CrossRef]
  9. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996); B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef] [PubMed]
  10. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1994), Vol. 33.
  11. G. Lenz, B. J. Eggleton, and N. Litchinitser, “Pulse compression using fiber gratings as highly dispersive nonlinear elements,” J. Opt. Soc. Am. B 15, 715–721 (1998). [CrossRef]
  12. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987); J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994). [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  14. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989). [CrossRef]
  15. P. C. Hill and B. J. Eggleton, “Strain gradient chirp of fiber Bragg grating,” Electron. Lett. 30, 1172–1174 (1994). [CrossRef]
  16. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by temperature gradient,” Opt. Lett. 19, 2027–2029 (1994). [CrossRef] [PubMed]
  17. P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991); erratum, J. Mod. Opt. 41, 163–164 (1994). [CrossRef]
  18. C. M. de Sterke, N. G. Broderick, B. J. Eggleton, and M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. 2, 253–268 (1996). [CrossRef]
  19. B. J. Eggleton, C. M. de Sterke, A. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998). [CrossRef]
  20. B. J. Eggleton, G. Lenz, R. E. Slusher, and N. M. Litchinitser, “Compression of optical pulses spectrally broadened by self-phase modulation with a fiber Bragg grating in transmission,” Appl. Opt. 30, 7055–7061 (1998). [CrossRef]
  21. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited