OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 524–534

Trapping of low-index microparticles in an optical vortex

K. T. Gahagan and G. A. Swartzlander  »View Author Affiliations

JOSA B, Vol. 15, Issue 2, pp. 524-534 (1998)

View Full Text Article

Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The equilibrium position of a low-index particle in an optical-vortex trap was experimentally measured for two different systems: a buoyant hollow glass sphere in water and a density-matched water droplet in acetophenone. Vortex traps are the only known static, single-beam configurations allowing three-dimensional trapping of such particles in the size range of 2–50 μm. The trap consists of a strongly focused Gaussian laser beam containing a holographically produced optical vortex. Using experimental and theoretical techniques, we also explored changes in the trapping efficiency owing to the vortex core size, the relative refractive index, and the numerical aperture of the focusing objective.

© 1998 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(350.3950) Other areas of optics : Micro-optics

K. T. Gahagan and G. A. Swartzlander, "Trapping of low-index microparticles in an optical vortex," J. Opt. Soc. Am. B 15, 524-534 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
  2. B. T. Unger and P. L. Marston, “Optical levitation of bubbles in water by the radiation pressure of a laser beam: an acoustically quiet levitator,” J. Acoust. Soc. Am. 83, 970–975 (1988).
  3. J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
  4. G. Roll, T. Kaiser, and G. Schweiger, “Optical trap sedimentation cell-a new technique for the sizing of microparticles,” J. Aerosol Sci. 27, 105–117 (1996).
  5. M. Lankers, E. E. M. Khaled, J. Popp, G. Rössling, H. Stahl, and W. Kiefer, “Determination of size changes of optically trapped gas bubbles by elastic light backscattering,” Appl. Opt. 36, 1638–1643 (1997).
  6. W. H. Wright, G. J. Sonek, Y. Tadir, and Michael W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
  7. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature (London) 330, 769–771 (1987).
  8. F. Hoffmann, “Laser microbeams for the manipulation of plant cells and subcellular structures,” Plant Sci. 113, 1–11 (1996).
  9. C. S. Buer, K. T. Gahagan, G. A. Swartzlander, Jr., and P. J. Weathers, “Threshold of power for Cucumis melo using an Ar+ laser beam,” In Vitro Cellular and Developmental Biology—Animal 32 (Part II), 82A (1996).
  10. Y. Tadir, W. H. Wright, O. Vafa, R. Asch, and M. W. Berns, “Force generated by human sperm correlated to velocity and determined using a laser generated optical trap,” Fert. Ster. 53, 944–947 (1990).
  11. K. Svoboda and S. M. Block, “Force and velocity measured for single kinesin molecules,” Cell 77, 773–784 (1994).
  12. P. J. H. Bronkhorst, G. J. Streekstra, J. Grimbergen, J. Nijh, J. J. Sixma, and G. J. Brakenhoff, “A new method to study shape recovery of red blood cells using multiple optical trapping,” Biophys. J. 69, 1666–1673 (1995).
  13. M. Schindler, “The cell optical displacement assay (coda): measurements of cytoskeletal tension in living plant cells with a laser optical trap,” Methods Cell Biol. 49, 71–84 (1995).
  14. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of single living cells using infra-red laser beams,” Ber. Bunsenges. Phys. Chem. 93, 254–260 (1989).
  15. I. A. Vorobjev, H. Liang, W. H. Wright, and M. W. Berns, “Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges,” Biophys. J. 64, 533–538 (1993).
  16. K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
  17. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
  18. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
  19. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
  20. A. Ashkin, “Forces of a single-beam gradient trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
  21. S. Sato, M. Ishigure, and H. Inaba, “Application of higher-order-mode Nd:YAG laser beam for manipulation and rotation of biological cells,” in Conference on Lasers and Electro-Optics, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 280–281.
  22. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
  23. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
  24. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–828 (1995).
  25. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
  26. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996).
  27. D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B 14, 3054–3065 (1997).
  28. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., “Experimental observation of fluid-like motion of optical vortices,” Phys. Rev. Lett. 79, 3399–3402 (1997).
  29. K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
  30. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Appl. Phys. Lett. 60, 807–809 (1992).
  31. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
  32. E. Higurashi, O. Ohguchi, and H. Ukita, “Optical trapping of low-refractive-index microfabricated objects using radiation pressure exerted on their inner walls,” Opt. Lett. 20, 1931–1933 (1995).
  33. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).
  34. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
  35. K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
  36. G. Roosen and C. Imbert, “Optical levitation by means of 2 horizontal laser beams: theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
  37. R. Gussgard, T. Lindmo, and I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1922–1930 (1992).
  38. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 208–215.
  39. A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
  40. Ref. 38, pp. 73–74.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited