OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 628–639

Mode propagation losses in He+ ion-implanted KNbO3 waveguides

Tomas Pliska, Daniel Fluck, Peter Günter, Lutz Beckers, and Christoph Buchal  »View Author Affiliations

JOSA B, Vol. 15, Issue 2, pp. 628-639 (1998)

View Full Text Article

Acrobat PDF (340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The losses of ion-implanted potassium niobate (KNbO3) waveguides are evaluated theoretically and experimentally in dependence on wavelength, irradiation dose, waveguide thickness, and waveguide width. Irradiation-induced absorption and tunneling are identified as the main sources of loss. The contributions from surface scattering and intrinsic material absorption are shown to be small. The attenuation due to irradiation-induced absorption and tunneling is calculated from the experimentally determined complex refractive-index profile. The optical loss is minimum in the red part of the spectrum and increases toward the blue because of absorption and toward the infrared because of tunneling. A minimum loss of less than 0.2 cm−1 (1 dB cm−1) was measured in an ion-implanted KNbO3 waveguide at a wavelength of 0.633 μm. On the basis of a theoretical model we give guidelines for the formation of optimized waveguides for specific applications, e.g., second-harmonic generation.

© 1998 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.2260) Materials : Ferroelectrics
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.7370) Optical devices : Waveguides

Tomas Pliska, Daniel Fluck, Peter Günter, Lutz Beckers, and Christoph Buchal, "Mode propagation losses in He+ ion-implanted KNbO3 waveguides," J. Opt. Soc. Am. B 15, 628-639 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57¿R78 (1985).
  2. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation. P. L. Knight and A. Miller, eds., Vol. 13 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, UK, 1994).
  3. P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285¿290 (1974).
  4. M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscherry, and P. Günter, “Material constants of KNbO3 relevant for electro- and acousto-optics,” J. Appl. Phys. 74, 1287¿1297 (1993).
  5. Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362¿1368 (1974).
  6. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, and B. Zysset, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear-optical interactions,” J. Opt. Soc. Am. B 9, 507¿517 (1992).
  7. U. Ellenberger, R. Weber, J. E. Balmer, D. Ellgehausen, and G. J. Mizell, “Pulsed optical damage threshold of potassium niobate,” Appl. Opt. 31, 7563¿7569 (1992).
  8. T. Bremer, W. Heiland, B. Hellermann, P. Hertel, E. Krätzig, and D. Kollewe, “Waveguides in KNbO3 by He+ implantation,” Ferroelectr. Lett. 9, 11¿14 (1988).
  9. L. Zhang, P. J. Chandler, and P. D. Townsend, “Detailed index profiles of ion implanted waveguides in KNbO3,” Ferroelectr. Lett. 11, 89¿97 (1990).
  10. P. Moretti, P. Thevenard, K. Wirl, P. Hertel, H. Hesse, E. Krätzig, and G. Godefroy, “Proton implanted waveguides in LiNbO3, KNbO3 and BaTiO3,” Ferroelectrics 128, 13¿18 (1992).
  11. F. P. Strohkendl, P. Günter, Ch. Buchal, and R. Irmscher, “Formation of optical waveguides in KNbO3 by low-dose MeV He+ implantation,” J. Appl. Phys. 69, 84¿88 (1991).
  12. D. Fluck, P. Günter, M. Fleuster, and Ch. Buchal, “Low-loss optical channel waveguides in KNbO3 by multiple energy ion implantation,” J. Appl. Phys. 72, 1671¿1675 (1992).
  13. D. Fluck, B. Binder, M. Küpfer, H. Looser, Ch. Buchal, and P. Günter, “Phase-matched second harmonic blue light generation in ion implanted KNbO3 planar waveguides with 29% conversion efficiency,” Opt. Commun. 90, 304¿310 (1992).
  14. D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Beckers, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133¿4135 (1996).
  15. D. Fluck, T. Pliska, P. Günter, L. Beckers, and C. Buchal, “Cerenkov-type second-harmonic generation in KNbO3 channel waveguides,” IEEE J. Quantum Electron. 32, 905¿916 (1996).
  16. J. M. Naden and B. L. Weiss, “Optical properties of planar waveguides formed by He+ implantation in LiNbO3,” J. Lightwave Technol. LT-3, 855¿859 (1985).
  17. P. J. Chandler, L. Zhang, and P. D. Townsend, “High temperature annealing of He+ ion-implanted quartz optical waveguides,” Nucl. Instrum. Methods B 46, 69¿73 (1990).
  18. D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20, 1256¿1258 (1995).
  19. T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and Ch. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114¿6120 (1995).
  20. E. Wiesendanger, “Dielectric, mechanical and optical properties of orthorhombic KNbO3,” Ferroelectrics 6, 263¿281 (1974).
  21. L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102¿1110 (1994).
  22. H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023¿2029 (1994).
  23. B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380¿386 (1992).
  24. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395¿2413 (1971).
  25. D. Fluck, “Ion-implanted KNbO3 waveguides for blue-light second-harmonic generation,” Ph.D. thesis no. 11225 (ETH Zürich, Zürich, 1995).
  26. D. K. Fork, F. Armani-Leplingard, and J. J. Kingston, “Optical losses in ferroelectric oxide thin films: Is there light at the end of the tunnel?” Mater. Res. Soc. Symp. Proc. 361, 155¿166 (1995).
  27. R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, and P. Günter, “Measured lattice damage and optical index change in KNbO3,” Mater. Res. Soc. Symp. Proc. 201, 399¿403 (1991).
  28. D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023¿6031 (1993).
  29. C. Solcia, D. Fluck, T. Pliska, P. Günter, St. Bauer, M. Fleuster, L. Beckers, and Ch. Buchal, “The refractive index distribution nc(z) of ion implanted KNbO3 waveguides,” Opt. Commun. 120, 39¿46 (1995).
  30. T. Pliska, C. Solcia, D. Fluck, P. Günter, L. Beckers, and Ch. Buchal, “Radiation damage profiles of the refractive indices of He+ ion-implanted KNbO3 waveguides,” J. Appl. Phys. 81, 1099¿1102 (1997).
  31. J. P. Biersack and L. G. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nucl. Instrum. Methods 174, 257¿269 (1980).
  32. G. Götz, “Optoeletronic materials,” in Ion Beam Modification of Insulators, P. Mazzoldi and G. W. Arnold, eds. (Elsevier, Amsterdam, 1987), pp. 412¿446.
  33. J. L. Jackel and J. J. Veselka, “Measuring losses in optical waveguides: a new method,” Appl. Opt. 23, 197¿199 (1984).
  34. K. H. Haegele and R. Ulrich, “Pyroelectric loss measurement in LiNbO3:Ti guides,” Opt. Lett. 4, 60¿62 (1979).
  35. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143¿147 (1985).
  36. S. Brülisauer, D. Fluck, C. Solcia, T. Pliska, and P. Günter, “Nondestructive waveguide loss-measurement method using self-pumped phase conjugation for optimum end-fire coupling,” Opt. Lett. 20, 1773¿1775 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited