OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 667–679

Effect of excited-state population density on nonradiative multiphonon relaxation rates of rare-earth ions

F. Pellé, N. Gardant, and F. Auzel  »View Author Affiliations

JOSA B, Vol. 15, Issue 2, pp. 667-679 (1998)

View Full Text Article

Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiphonon relaxation rate saturation is observed for rare-earth-doped glasses for high excited-state densities. This behavior is analyzed in a statistical approach; a theoretical model for the microscopic process is proposed. A phonon bottleneck effect on radiationless relaxation related to an accepting-modes saturation is suggested. At high excited-state density, ions in a phonon diffusion volume simultaneously fill the accepting modes. The critical distance below which excited ions share a common phonon bath is related to the phonon diffusion length in the host and deduced from our model. The results are in good agreement with the phonon mean free path independently deduced from sound velocity, thermal conductivity, and heat capacity.

© 1998 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(160.5690) Materials : Rare-earth-doped materials

F. Pellé, N. Gardant, and F. Auzel, "Effect of excited-state population density on nonradiative multiphonon relaxation rates of rare-earth ions," J. Opt. Soc. Am. B 15, 667-679 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
  2. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
  3. F. Auzel, “Multiphonon interaction of excited luminescent centers in the weak coupling limit: nonradiative decay and multiphonon side bands,” in Luminescence of Inorganic Solids, B. Di Bartolo, ed. (Plenum, New York, 1978), pp. 67–113.
  4. Y. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, “Multiple-phonon nonradiative relaxation: experimental rates in fluoride crystals doped with Er3+ and Nd3+ ions and a theoretical model,” Phys. Rev. B 49, 3821–3830 (1994).
  5. Y. V. Orlovskii, K. K. Pukhov, T. T. Basiev, and T. Tsuboi, “Nonlinear mechanism of multiphonon relaxation of the energy of electronic excitation in optical crystals doped with rare-earth ions,” Opt. Mater. 4, 583–595 (1995).
  6. R. Reisfeld and Y. Eckstein, “Radiative and non-radiative transition probabilities and quantum yields for excited states of Er3+ in germanate and tellurite glasses,” J. Non-Cryst. Solids 15, 125–140 (1974).
  7. A. M. Stoneham, “The phonon bottleneck in paramagnetic crystals,” Proc. Phys. Soc. London 86, 1163–1177 (1965).
  8. J. I. Dijkhuis, A. C. Van der Pol, and H. W. de Wijn, “Spectral width of optically generated bottleneck 29 cm−1 phonons in ruby,” Phys. Rev. Lett. 37, 1554–1557 (1976).
  9. L. Godfrey, J. E. Rives, and R. S. Meltzer, “Anomalous luminescence decay in LaF3:Pr3+ due to resonant trapping and bottlenecking of 23 cm−1 phonons,” J. Lumin. 18/19, 929–932 (1979).
  10. S. G. Demos and R. R. Alfano, “Subpicosecond time-resolved Raman investigation of optical phonon modes in Cr-doped forsterite,” Phys. Rev. B 52, 987–996 (1995).
  11. D. M. Calistru, S. G. Demos, and R. R. Alfano, “Dynamics of local modes during nonradiative relaxation,” Phys. Rev. Lett. 78, 374–377 (1997).
  12. F. Auzel and F. Pellé, “Saturation of accepting modes in multiphonon radiative transitions,” C. R. Acad. Sci. IIb, 835–841 (1996).
  13. F. Auzel and F. Pellé, “Concentration and excitation effects in multiphonon nonradiative transitions of rare-earth ions,” J. Lumin. 69, 249–255 (1996).
  14. F. Auzel and F. Pellé, “Bottleneck in multiphonon nonradiative transitions,” Phys. Rev. B 55, 11,006–11,009 (1997).
  15. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
  16. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
  17. F. Auzel, “Contribution à l’étude spectroscopique de verres dopés avec Er3+ pour obtenir l’effect laser,” Ph.D. dissertation (University of Paris, Paris, 1968).
  18. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. B 157, 262–272 (1967).
  19. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the rare earth lanthanides in LaF3,” internal report (Johns Hopkins University, Baltimore, Md., 1997).
  20. N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
  21. H. Takebe, S. Fujino, and K. Morinaga, “Refractive index dispersion of tellurite glasses in the region from 0.40 to 1.71 μm,” J. Am. Ceram. Soc. 77, 2455–2457 (1994).
  22. F. Pellé, N. Gardant, and F. Auzel, “Nonradiative processes in Yb3+-doped borate glasses,” to be submitted in J. Lumin.
  23. J. M. F. Van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983).
  24. A. Kiel, “Line broadening in the excited state of paramagnetic crystals,” in Paramagnetic Resonance, W. Low, ed. (Academic, New York, 1963), pp. 525–534.
  25. H. W. Moos, “Spectroscopic relaxation processes of rare-earth ions in crystals,” J. Lumin. 1/2, 106–121 (1970).
  26. W. E. Hagston and J. E. Lowther, “Multiphonon processes in rare-earth ions,” Physica (Amsterdam) 70, 40–61 (1973).
  27. L. A. Riseberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976), Vol. XIV, pp. 91–159.
  28. K. Huang and A. Rhys, “Theory of light absorption and non-radiative transition in F-centres,” Proc. R. Soc. London, Ser. A 204, 406–423 (1950).
  29. S. Fisher, “Correlation function approach to radiationless transitions,” J. Chem. Phys. 53, 3195–3207 (1970).
  30. M. Lax, “The Franck–Condon principle and its application to crystals,” J. Chem. Phys. 20, 1752–1760 (1952).
  31. R. Kubo and Y. Toyozawa, “Application of the method of generating function to radiative and non-radiative transitions of a trapped electron in a crystal,” Prog. Theor. Phys. 13, 160–182 (1955).
  32. F. K. Fong, ed., Theory of Molecular Relaxation: Applications in Chemistry and Biology (Wiley, New York, 1975).
  33. C. W. Struck and W. H. Fonger, “Unified model of the temperature quenching of narrow-line and broad-band emissions,” J. Lumin. 10, 1–30 (1975).
  34. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states and phonon assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961–2969 (1970).
  35. E. Gutsche, “Non-Condon approximation and the static approach in the theory of nonradiative multiphonon transitions,” Phys. Status Solidi B 109, 583–597 (1982).
  36. C. Kittel, ed., Introduction to Solid State Physics (Wiley, New York, 1971).
  37. E. H. Ratcliffe, “A survey of most probable values for the thermal conductivities of glasses between about −150 and 100 °C, including new data on twenty-two glasses and a working formula for the calculation of conductivity from composition,” Glass Technol. 4, 113–128 (1963).
  38. H. Scholze, ed., GLAS, Natur. Struktur und Eigenschaften (Springer-Verlag, Berlin, 1977).
  39. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, “Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders,” J. Opt. Soc. Am. B 10, 2358–2363 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited