OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 781–788

Poling and characterization of polymer waveguides for modal dispersion phase-matched second-harmonic generation

M. Jäger, G. I. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse  »View Author Affiliations


JOSA B, Vol. 15, Issue 2, pp. 781-788 (1998)
http://dx.doi.org/10.1364/JOSAB.15.000781


View Full Text Article

Acrobat PDF (324 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

New multilayer polymer waveguides have been introduced with inverted nonlinear layers for efficient modal dispersion phase-matched second-harmonic generation at the telecommunication wavelength near 1.55 μm. The nonlinear optical core of the waveguides consists of two modified Disperse Red 1–based side-chain polymers with different glass-transition temperatures. The signs of the nonlinear optical coefficients are different in the two polymers after suitable poling above and between the respective glass transitions, thereby optimizing the overlap integral. The optical nonlinearity profile is controlled by in situ electro-optical measurements during the two poling steps. The successful preparation of inverted layers is verified by electro-optical, pyroelectrical, and second-harmonic-generation thermal analysis. Waveguide losses are low at 1.55 μm (4 dB/cm) and high at 800 nm (100 dB/cm) because of the residual absorption of the Disperse Red 1-like chromophores. Phase-matched second-harmonic generation has been demonstrated with a large figure of merit, 14%/W cm−2. Extensive room for improvement in second-harmonic generation is possible with optimized chromophores, because the total conversion efficiency is strongly limited by the harmonic losses in the modified Disperse Red 1.

© 1998 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(160.5470) Materials : Polymers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(250.5460) Optoelectronics : Polymer waveguides

Citation
M. Jäger, G. I. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, "Poling and characterization of polymer waveguides for modal dispersion phase-matched second-harmonic generation," J. Opt. Soc. Am. B 15, 781-788 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-2-781


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
  2. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
  3. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
  4. A. Otomo, M. Jäger, G. I. Stegeman, M. C. Flipse, and M. Diemeer, “Key trade-offs for second-harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
  5. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
  6. S. Tomaru, T. Watanabe, M. Hikita, M. Amano, Y. Shuto, I. Yokohama, T. Kaino, and M. Asobe, “Quasi-phase-matched second harmonic generation in a polymer waveguide with a periodic poled structure,” Appl. Phys. Lett. 68, 1760–1762 (1996); Y. Shuto, T. Watanabe, S. Tomaru, I. Yokohama, M. Hikita, and M. Amano, “Quasi-phase-matched secondharmonic generation in diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 33, 349–357 (1997).
  7. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, “Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide,” Opt. Lett. 20, 2273–2275 (1995).
  8. K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
  9. M. Jäger, G. I. Stegeman, W. Brinker, S. Yilmaz, S. Bauer, W. H. G. Horsthuis, and G. R. Möhlmann, “Comparison of quasi-phase-matching geometries for second harmonic generation in poled polymer channel waveguides at 1.5 μm,” Appl. Phys. Lett. 68, 1183–1185 (1996).
  10. H. Ito and H. Inaba, “Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure,” Opt. Lett. 2, 139–141 (1978).
  11. M. Flörsheimer, M. Küpfer, Ch. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. Commun. 4, 795–798 (1992).
  12. M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. B. J. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996).
  13. M. Jäger, G. I. Stegeman, M. C. Flipse, M. B. J. Diemeer, and G. R. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996).
  14. M. Küpfer, M. Flörsheimer, Ch. Bosshard, and P. Günter, “Phase-matched second-harmonic generation in χ(2) inverted Langmuir–Blodgett waveguide structures,” Electron. Lett. 29, 2033–2034 (1993).
  15. T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
  16. W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stähelin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett 70, 3347–3349 (1997).
  17. S. Bauer-Gogonea, S. Bauer, W. Wirges, and R. Gerhard-Multhaupt, “Preparation and pyroelectrical investigation of bimorph polymer layers,” Ann. Phys. (Leipzig) 4, 355–366 (1995).
  18. M. Ahlheim and F. Lehr, “Electro-optically active polymers. Nonlinear optical polymers prepared from maleic anhydride copolymers by polymer analogous reaction,” Macromol. Chem. Phys. 195, 361–373 (1994).
  19. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
  20. J. S. Schildkraut, “Determination of the electro-optic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
  21. C. Dinger, S. Yilmaz, W. Brinker, W. Wirges, S. Bauer-Gogonea, S. Bauer, and R. Gerhard-Multhaupt, “Ellipsometry and Michelson interferometry for fixed- and variable-frequency electro-optical measurements on poled poly mers,” Pure Appl. Opt. 5, 561–567 (1996).
  22. S. Aramaki, “Dynamic electro-optic effect induced by chromophore motion in poling process,” Jpn. J. Appl. Phys. 34, L47–L50 (1995).
  23. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996).
  24. S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. Appl. Phys. Rev. 80, 5531–5558 (1996).
  25. S. Bauer-Gogonea and R. Gerhard-Multhaupt, “Nonlinear optical polymer electrets. Current practice,” IEEE Trans. Dielectr. Electr. Insul. 3, 677–705 (1996).
  26. V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
  27. For example, M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second-harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited