OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 826–837

Degenerate four-wave mixing for characterization of thin-film waveguides

C. Malouin, A. Villeneuve, G. Vitrant, P. Cottin, and R. A. Lessard  »View Author Affiliations

JOSA B, Vol. 15, Issue 2, pp. 826-837 (1998)

View Full Text Article

Acrobat PDF (371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate experimentally a degenerate four-wave mixing (DFWM) geometry in waveguides that permits the simultaneous determination of the optical Kerr nonlinear refractive index, the nonlinear absorption, and the nonlinear response time of thin-film materials. The geometry consists of two counterpropagating guided pump beams in a planar waveguide. The probe beam simply passes through the thin film and is not guided. By measuring the DFWM signal energy and the guided pump energy at the waveguide output, one can observe several effects simultaneously. Each effect has a different sensitivity to the nonlinearity and, used together, these effects increase the accuracy in determination of the complex <i>n</i><sub>2</sub>. This technique was tested on dialkylaminonitrostilbene films. Good agreement was found between the numerical simulations and experimental data. Therefore the technique appears to be a useful characterization technique that yields, in a single setup with basic laboratory equipment, all the relevant parameters of the optical Kerr nonlinearity of thin-film planar waveguides.

© 1998 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(160.5470) Materials : Polymers
(190.0190) Nonlinear optics : Nonlinear optics
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(300.2570) Spectroscopy : Four-wave mixing

C. Malouin, A. Villeneuve, G. Vitrant, P. Cottin, and R. A. Lessard, "Degenerate four-wave mixing for characterization of thin-film waveguides," J. Opt. Soc. Am. B 15, 826-837 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. O. Dühr, F. Seifert, and V. Petrov, “Ultrafast Kerr demultiplexing up to 460 Gbits/s in short optical fibers,” Appl. Opt. 34, 5297–5300 (1995).
  2. H. W. H. Lee and R. S. Hughes, Jr., “Antiresonant ring interferometric nonlinear spectroscopy for nonlinear-optical measurements,” Opt. Lett. 19, 1708–1710 (1994).
  3. G. Vitrant, L. Mayollet, B. Vögele, A. Rameix, R. Reinisch, G. I. Stegeman, G. R. Möhlmann, W. H. G. Horsthuis, P. A. Chollet, and F. Kajzar, “Measurements of large nonresonant nonlinearities in doped polymers,” Nonlinear Opt. 8, 251–261 (1994).
  4. G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half the band gap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
  5. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
  6. F. Kajzar, J. Messier, and C. Rosilio, “Nonlinear optical properties of thin films of polysilane,” J. Appl. Phys. 60, 3040–3044 (1986).
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  8. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988).
  9. G. Assanto, M. B. Marques, and G. I. Stegeman, “Grating coupling of light into third-order nonlinear waveguides,” J. Opt. Soc. Am. B 8, 553–561 (1991).
  10. R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1983).
  11. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
  12. J. M. Nunzi and F. Charra, “Complex third-order phase conjugation nonlinearity of polymeric thin films,” Appl. Phys. Lett. 59, 13–15 (1991).
  13. C. Malouin, A. Villeneuve, G. Vitrant, and R. A. Lessard, “Degenerate four-wave mixing geometry in thin-film waveguides for nonlinear material characterization,” Opt. Lett. 21, 21–23 (1996).
  14. A. Gabel, K. W. DeLong, C. T. Seaton, and G. I. Stegeman, “Efficient degenerate four-wave mixing in an ion-exchanged semiconductor-doped glass waveguide,” Appl. Phys. Lett. 51, 1682–1684 (1987).
  15. G. I. Stegeman, E. M. Wright, and C. T. Seaton, “Degenerate four-wave mixing from a waveguide with guided wave pump beams,” J. Appl. Phys. 64, 4318–4322 (1988).
  16. T. Tamir, Integrated Optics (Springer-Verlag, Berlin, 1985).
  17. H. Kogelnik and V. Ramaswamy, “Scaling rules of thin-film optical waveguides,” Appl. Opt. 13, 1857–1859 (1974).
  18. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1989).
  19. J. Danckaert, K. Fobelets, I. Veretennicoff, G. Vitrant, and R. Reinisch, “Dispersive optical bistability in stratified structures,” Phys. Rev. B 44, 8214–8225 (1991).
  20. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
  21. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  22. H. Q. Le, W. D. Goodhue, and K. Rauschenbach, “Measurement of third-order optical nonlinear susceptibility using four-wave mixing in a single-mode ridge waveguides,” Opt. Lett. 15, 1126–1128 (1990).
  23. G. Assanto, in Guided Wave Nonlinear Optics, D. Ostrowsky and R. Reinisch, eds., Vol. 214 of NATO ASI Series (Kluwer, Dordrecht, The Netherlands, 1992), p. 257.
  24. S. Guha and Conner, “Degenerate four-wave mixing in Kerr media in the presence of nonlinear refraction, pump depletion and linear absorption,” Opt. Commun. 89, 107–119 (1992).
  25. J. Fick and G. Vitrant, “Fast optical switching in nonlinear prism couplers,” Opt. Lett. 20, 1462–1464 (1995).
  26. D. G. Dalgoutte and C. D. W. Wilkinson, “Thin grating couplers for integrated optics: an experimental and theoretical study,” Appl. Opt. 14, 2983–2998 (1975).
  27. G. Vitrant, M. Haelterman, and R. Reinisch, “Transverse effects in nonlinear planar resonators. II. Modal analysis for normal and oblique incidence,” J. Opt. Soc. Am. B 7, 1319–1327 (1990).
  28. P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed., Vol. 22 of Topics in Current Physics (Springer-Verlag, New York, 1980), p. 101.
  29. M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two-photon absorption of dialkylaminonitrostilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994).
  30. R. DeSalvo, “On nonlinear refraction and two-photon absorption in optical media,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 1993).
  31. D. Zwillinger, Handbook of Differential Equations (Academic, New York, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited