OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 2 — Feb. 1, 1998
  • pp: 838–845

Heavy-atom effect on second hyperpolarizabilities of thiophene homologues investigated by a femtosecond optical-Kerr-effect experiment and ab initio molecular orbital calculation

Kenji Kamada, Minoru Ueda, Toru Sakaguchi, Koji Ohta, and Toshio Fukumi  »View Author Affiliations

JOSA B, Vol. 15, Issue 2, pp. 838-845 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The second hyperpolarizabilities of three heterocyclic molecules of C4H4X, where X=O (furan), S (thiophene), or Se (selenophene), were investigated by an optical-heterodyne-detected optical-Kerr-effect experiment and an ab initio Hartree–Fock molecular orbital calculation with largely augmented basis sets. From the observed third-order responses the electronic hyperpolarizabilities were determined after the nuclear nonlinear optical responses were removed by Fourier-transform analysis. Results of both experiment and calculation exhibited 2 times enhancement when the heteroatom of O was replaced by Se. The origin of the enhancement and the contribution of the heteroatom to the hyperpolarizability are discussed. Also, a direct comparison of the experimental values with calculated ones is made.

© 1998 Optical Society of America

OCIS Codes
(000.5360) General : Physics literature and publications
(070.2590) Fourier optics and signal processing : ABCD transforms
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(320.7100) Ultrafast optics : Ultrafast measurements

Kenji Kamada, Minoru Ueda, Toru Sakaguchi, Koji Ohta, and Toshio Fukumi, "Heavy-atom effect on second hyperpolarizabilities of thiophene homologues investigated by a femtosecond optical-Kerr-effect experiment and ab initio molecular orbital calculation," J. Opt. Soc. Am. B 15, 838-845 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. J.-L. Brédas, C. Adant, P. C. E. Tackx, A. Persoons, and B. M. Pierce, “Third-order nonlinear optical response in organic materials: theoretical and experimental aspects,” Chem. Rev. 94, 243–278 (1994). [CrossRef]
  3. M.-T. Zhao, B. P. Singh, and P. N. Prasad, “A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers,” J. Chem. Phys. 89, 5535–5541 (1988). [CrossRef]
  4. H. Okawa, T. Wada, A. Yamada, and H. Sasabe, “Third-order optical nonlinearity of soluble polythiophenes,” Mater. Res. Soc. Symp. Proc. 214, 23–28 (1991). [CrossRef]
  5. K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996). [CrossRef]
  6. D. McMorrow, “Separation of nuclear and electronic contributions to femtosecond four-wave mixing data,” Opt. Commun. 86, 236–244 (1991). [CrossRef]
  7. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988). [CrossRef]
  8. Y. J. Chang and E. W. Castner, Jr., “Fast responses from slowly relaxing liquids: a comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water,” J. Chem. Phys. 99, 7289–7299 (1993). [CrossRef]
  9. H. P. Deuel, P. Cong, and J. D. Simon, “Probing intermolecular dynamics in liquids by femtosecond optical Kerr effect spectroscopy: effects of molecular symmetry,” J. Phys. Chem. 98, 12, 600–12, 608 (1994). [CrossRef]
  10. S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison of femtosecond Fourier-transform Raman spectrum with spontaneous light scattering spectrum,” Chem. Phys. Lett. 236, 259–264 (1995). [CrossRef]
  11. F. W. Deeg, J. J. Stankus, S. R. Greenfiled, V. J. Newell, and M. D. Fayer, “Anisotropic reorientational relaxation of biphenyl: transient grating optical Kerr effect measurements,” J. Chem. Phys. 90, 6893–6902 (1989). [CrossRef]
  12. G. L. Eesley, M. D. Levenson, and W. M. Tolles, “Optically heterodyned coherent Raman spectroscopy,” IEEE J. Quantum Electron. QE-14, 45–49 (1978). [CrossRef]
  13. K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr study of heavy atom effects on the third-order nonlinearity of thiophene homologues: purely electronic contribution,” Chem. Phys. Lett. 263, 215–222 (1996). [CrossRef]
  14. D. McMorrow and W. T. Lotshaw, “The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects,” J. Chem. Phys. 174, 85–94 (1990).
  15. K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrafast laser pulses,” Phys. Rev. A 12, 1036–1047 (1975). [CrossRef]
  16. B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975). [CrossRef]
  17. A. Mito, K. Hagimoto, and C. Takahashi, “Determination of the third-order optical nonlinear susceptibility of fused silica using optical harmonic generation,” Nonlinear Opt. 13, 3–18 (1995).
  18. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Jhonson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, GAUSSIAN 92 Software program (Gaussian, Inc., Pittsburgh, Pa., 1992).
  19. K. Ohta, T. Fukumi, and T. Sakaguchi, “Basis set dependence of polarizability and hyperpolarizability of some organic molecules in ab initio molecular orbital calculations,” Nonlinear Opt. 6, 215–227 (1994).
  20. K. Ohta, T. Sakaguchi, K. Kamada, and T. Fukumi, “Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion,” Chem. Phys. Lett. 274, 306–314 (1997). [CrossRef]
  21. W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi,” J. Chem. Phys. 82, 284–298 (1985). [CrossRef]
  22. V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: ab initio time-dependent coupled perturbed Hartree–Fock–Roothaan studies of basic heterocyclic structures,” J. Phys. Chem. 99, 9045–9050 (1995). [CrossRef]
  23. E. Perrin, P. N. Prasad, P. Mougenot, and M. Dupuis, “Ab initio calculations of polarizability and second hyperpolarizability in benzene including electron correlation treated by Møller–Plesset theory,” J. Chem. Phys. 91, 4728–4732 (1989). [CrossRef]
  24. F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” J. Phys. Chem. 97, 1158–1163 (1993). [CrossRef]
  25. D. M. Bishop, “Molecular vibrational and rotational motion in static and dynamic electric fields,” Rev. Mod. Phys. 62, 343–374 (1990). [CrossRef]
  26. B. Champagne, “Vibrational polarizability and hyperpolarizability of p-nitroaniline,” Chem. Phys. Lett. 261, 57–65 (1996). [CrossRef]
  27. G. Varsányi, L. Nyulśzi, T. Veszprémi, and T. Narisawa, “Vibronic analysis and symmetry of the lowest energy ultraviolet transition of thiophene,” J. Chem. Soc. Perkin Trans. 2, 761–765 (1982).
  28. M. Kuzyk, “All-optical materials and devices,” in Organic Thin Films for Waveguiding Nonlinear Optics, F. Kajzar and J. D. Swalen, eds. (Gordon & Breach, Philadelphia, Pa., 1996), pp. 759–820.
  29. F. Fringuelli, G. Marino, and A. Taticchi, “Tellurophene and related compounds,” Adv. Heterocycl. Chem. 21, 119–173 (1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited