OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 3 — Mar. 1, 1998
  • pp: 1042–1051

Determination of the photorefractive parameters of Bi12SiO20 by study of the dynamic behavior of complementary gratings

L. Boutsikaris, S. Mailis, and N. A. Vainos  »View Author Affiliations

JOSA B, Vol. 15, Issue 3, pp. 1042-1051 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dynamic behavior of the complementary space-charge gratings formed in a Bi12SiO20 crystal through prolonged recording at 780 nm is used to determine a number of significant photorefractive parameters, including effective trap density, diffusion length, and dielectric relaxation time, simultaneously for both types of charge carriers. This simple, all-optical method does not require prior knowledge of any other photorefractive parameters and therefore represents the only procedure currently available capable of direct materials evaluation in the low-coupling regime. Furthermore, the scheme provides the means for quantitatively assessing the effects of crystal sensitization resulting, for example, from uniform preillumination.

© 1998 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.5320) Materials : Photorefractive materials
(230.1150) Optical devices : All-optical devices

L. Boutsikaris, S. Mailis, and N. A. Vainos, "Determination of the photorefractive parameters of Bi12SiO20 by study of the dynamic behavior of complementary gratings," J. Opt. Soc. Am. B 15, 1042-1051 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  2. F. M. Davidson, ed., Selected Papers on Photorefractive Materials, SPIE Milestone Series MS 86 (SPIE, Bellingham, Wash., 1994).
  3. R. A. Mullen and R. W. Hellwarth, “Optical measurement of the photorefractive parameters of Bi12SiO20,” J. Appl. Phys. 58, 40–44 (1985). [CrossRef]
  4. G. Pauliat, J. M. C. Jonathan, M. Allain, J. C. Launay, and G. Roosen, “Determinations of the photorefractive parameters of Bi12GeO20 crystals using transient grating analysis,” Opt. Commun. 59, 266–271 (1986). [CrossRef]
  5. N. A. Vainos, S. L. Clapham, and R. W. Eason, “Multiplexed permanent and real time holographic recording in photorefractive BSO,” Appl. Opt. 28, 4381–4385 (1989). [CrossRef] [PubMed]
  6. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989). [CrossRef]
  7. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972). [CrossRef]
  8. D. von der Linde, A. M. Glass, and K. F. Rogers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975). [CrossRef]
  9. G. Montemezzani, M. Zgonik, and P. Gunter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993). [CrossRef]
  10. D. Kirilov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991). [CrossRef]
  11. J. P. Herriau and J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986). [CrossRef]
  12. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation and evolution of complementary gratings in photorefractive bismuth silicon oxide,” Phys. Rev. B 42, 5641–5648 (1990). [CrossRef]
  13. M. Miteva and L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photo-refractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988). [CrossRef]
  14. L. M. Bernardo, J. C. Lopes, and O. D. Soares, “Hole-electron competition with fast and slow gratings in Bi12SiO20 crystals,” Appl. Opt. 29, 12–14 (1990). [CrossRef] [PubMed]
  15. S. Mailis, L. Boutsikaris, and N. A. Vainos, “Multiplexed static and dynamic photorefraction in Bi12SiO20 crystals at 780 nm,” J. Opt. Soc. Am. B 11, 1996–1999 (1994). [CrossRef]
  16. S. Mailis, L. Boutsikaris, and N. A. Vainos, “Photorefraction at 780 nm in Bi12SiO20 crystals: effects and applications,” Asian J. Phys. 4, 31–44 (1994).
  17. S. Zhivkova and M. Miteva, “Image subtraction using fixed holograms in photorefractive Bi12TiO20 crystals,” Opt. Lett. 16, 750–751 (1991). [CrossRef] [PubMed]
  18. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986). [CrossRef]
  19. G. C. Valley, “Erase rates in photorefractive materials with two photoactive species,” Appl. Opt. 22, 3160–3164 (1983). [CrossRef] [PubMed]
  20. N. V. Kukhtarev, G. E. Dovgalenko, and V. N. Starkov, “Influence of the optical activity on hologram formation in photorefractive crystals,” Appl. Phys. A: Solids Surf. 33, 227–230 (1984). [CrossRef]
  21. G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986). [CrossRef]
  22. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990). [CrossRef]
  23. S. Zhivkova and M. Miteva, “Holographic recording in photorefractive crystals with simultaneous electron-hole transport and two active centers,” J. Appl. Phys. 68, 3099–3103 (1990). [CrossRef]
  24. S. Zhivkova, “Quasi-nondestructive readout of holograms stored in photorefractive sillenites,” J. Appl. Phys. 71, 581–585 (1992). [CrossRef]
  25. M. Jeganathan and L. Hesselink, “Diffraction from thermally fixed gratings in a photorefractive medium: steady state and transient analysis,” J. Opt. Soc. Am. B 11, 1791–1799 (1994). [CrossRef]
  26. A. E. Attard, “Theory of origins of the photorefractive and photoconductive effects in Bi12SiO20,” J. Appl. Phys. 69, 44–55 (1991). [CrossRef]
  27. J. E. Dennis and D. J. Woods, New Computing Environments: Microcomputers in Large-Scale Computing, A. Wouk, ed., SIAM (Soc. Ind. Appl. Math.) Rev. 29, 116–122 (1987).
  28. P. Gunter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982). [CrossRef]
  29. R. Grousson, M. Henry, and S. Mallick, “Transport properties of photoelectrons in Bi12SiO20,” J. Appl. Phys. 56, 224–229 (1984). [CrossRef]
  30. M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977). [CrossRef]
  31. S. G. Odoulov, K. V. Shcherbin, and A. N. Shumeljuk, “Photorefractive recording in BTO in the near infrared,” J. Opt. Soc. Am. B 11, 1780–1785 (1994). [CrossRef]
  32. J. P. Huignard and F. Micheron, “High-sensitivity read-write volume holographic storage in Bi12SiO20 and Bi12GeO20 crystals,” Appl. Phys. Lett. 29, 591–593 (1976). [CrossRef]
  33. J. P. Huignard, J. P. Herriau, and G. Rivet, “Phase-conjugation and spatial-frequency dependence of wave-front reflectivity in Bi12SiO20 crystals,” Opt. Lett. 5, 102–104 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited