OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 3 — Mar. 1, 1998
  • pp: 1107–1119

Nonlinear gain and carrier temperature dynamics in semiconductor laser media

T. V. Sarkisyan, A. N. Oraevsky, A. T. Rosenberger, R. L. Rolleigh, and D. K. Bandy  »View Author Affiliations

JOSA B, Vol. 15, Issue 3, pp. 1107-1119 (1998)

View Full Text Article

Acrobat PDF (321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The macroscopic behavior of a semiconductor laser medium is described by use of modified rate equations. The model, valid on time scales greater than 10<sup>−13</sup> s, explicitly treats carrier temperature as a dynamic variable and includes the nonlinear dependence of the gain function on carrier density and temperature. Gain suppression that is due to carrier heating is a natural consequence of the model and gives a qualitative explanation of subpicosecond gain dynamics experiments without introducing gain nonlinearity phenomenologically. We demonstrate the temperature behavior of the laser during transient dynamics near and well above threshold. By including carrier temperature as a dynamic variable we show that the laser response to an external perturbation exhibits a noticeable change in the damped oscillations of the photon density compared with that in models without temperature dynamics. Variation in the evolution of the gain function for different external pulse energies is also demonstrated.

© 1998 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(250.5980) Optoelectronics : Semiconductor optical amplifiers

T. V. Sarkisyan, A. N. Oraevsky, A. T. Rosenberger, R. L. Rolleigh, and D. K. Bandy, "Nonlinear gain and carrier temperature dynamics in semiconductor laser media," J. Opt. Soc. Am. B 15, 1107-1119 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. P. Kesler and E. P. Ippen, “Subpicosecond gain dynamics in GaAlAs laser diodes,” Appl. Phys. Lett. 51, 1765 (1987).
  2. J. Shah, R. F. Leheny, and R. E. Nahory, “Hot-carrier effects in 1.3-μ In1−xGaxAsyP1−y light emitting diodes,” Appl. Phys. Lett. 39, 618 (1981).
  3. T. L. Koch, L. C. Chiu, C. Harder, and A. Yariv, “Picosecond carrier dynamics and laser action in optically pumped buried heterostructure lasers,” Appl. Phys. Lett. 41, 6 (1982).
  4. L. A. Rivlin, “Febrile reaction of electrons in semiconductor laser to an ultrashort light pulse,” Sov. J. Quantum Electron. 15, 453 (1985).
  5. J. Shah and G. J. Iafrate, eds., Hot Carriers in Semiconductors, proceedings of the Fifth International Conference (Pergamon, London, 1988), and references therein.
  6. G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980).
  7. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, 1993).
  8. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  9. V. M. Galitskii and V. F. Elesin, “Electron kinetics and stationary generation in semiconductor lasers,” Sov. Phys. JETP 37, 351 (1973).
  10. V. M. Galitskii and V. F. Elesin, “Kinetic theory of generation of a strong field in semiconductor lasers,” Sov. Phys. JETP 41, 104 (1975).
  11. I. A. Poluektov, “Theory of powerful light pulse propagation through the media under conditions of coherent resonant interaction,” Ph.D. dissertation (Lebedev Physics Institute, Moscow, 1981) (in Russian).
  12. C. M. Bowden and G. P. Agrawal, “Generalized Bloch–Maxwell formulation for semiconductor lasers,” Opt. Commun. 100, 147 (1993).
  13. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).
  14. F. Jahnke and S. W. Koch, “Many-body theory for semiconductor microcavity lasers,” Phys. Rev. A 52, 1712 (1995).
  15. F. Jahnke and S. W. Koch, “Ultrafast intensity switching and nonthermal carrier effects in semiconductor microcavity lasers,” Appl. Phys. Lett. 67, 2278 (1995).
  16. C. M. Bowden and G. P. Agrawal, “Maxwell–Bloch formulation for semiconductors: effects of coherent Coulomb exchange,” Phys. Rev. A 51, 4132 (1995).
  17. O. N. Krokhin and Yu. M. Popov, “Slowing-down times of non-equilibrium current in semiconductors,” in Proceedings of International Conference on Semiconductor Physics (Czechoslovak Academy of Sciences, Prague, 1960), p. 126.
  18. L. A. Rivlin, “Nonthermal dynamics of amplification in two-component semiconductor laser,” Sov. J. Quantum Electron. 19, 1345 (1989).
  19. M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606 (1991).
  20. A. N. Oraevsky, M. M. Clark, and D. K. Bandy, “Many-temperature model of laser with dynamics,” Opt. Commun. 85, 360 (1991).
  21. C. Z. Ning, R. A. Indik, and J. V. Moloney, “Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers,” J. Opt. Soc. Am. B 12, 1993 (1995).
  22. A. V. Uskov, J. R. Karin, R. Nagarajan, and J. E. Bowers, “Dynamics of carrier heating and sweepout in waveguide saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 1, 552 (1995).
  23. V. I. Tolstikhin and M. Willander, “Carrier heating effects in dynamic-single-frequency GaInAsP-InP laser diodes,” IEEE J. Quantum Electron. 31, 814 (1995).
  24. C.-Y. Tsai, R. M. Spencer, Y.-H. Lo, and L. F. Eastman, “Nonlinear gain coefficients in semiconductor lasers: effects of carrier heating,” IEEE J. Quantum Electron. 32, 201 (1996).
  25. K. Böer, Survey of Semiconductor Physics (Van Nostrand Reinhold, New York, 1992).
  26. V. Sa-yakanit, “Electron density of states in a Gaussian random potential: path-integral approach,” Phys. Rev. B 19, 2266 (1979).
  27. W. Sritrakool, V. Sa-yakanit, and H. R. Glyde, “Band tails in disordered systems,” Phys. Rev. B 33, 1199 (1986).
  28. L. A. Rivlin, A. T. Semenov, and S. D. Yakubovich, Dynamics and Spectra of Semiconductor Lasers (Radio I Svyaz, Moscow, 1983) (in Russian); L. A. Rivlin, “Dynamics of semiconductor lasers,” J. Sov. Laser Res. 7, 11 (1986).
  29. M. J. Adams, “Theoretical effects of exponential band tails on the properties of the injection laser,” Solid State Electron. 12, 661 (1969).
  30. P. G. Eliseev, I. Ismailov, A. I. Krasil’nikov, and M. A. Man’ko, “Spectral characteristics of injection lasers,” Sov. Phys. Semicond. 1, 797 (1967).
  31. J. Mørk and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13, 1803 (1996).
  32. B. N. Gomatam and A. P. DeFonzo, “Theory of hot carrier effects on non-linear gain in GaAs-GaAlAs lasers and amplifiers,” IEEE J. Quantum Electron. 26, 1689 (1990).
  33. M. Willatzen, T. Takahashi, and Y. Arakawa, “Nonlinear gain effects due to carrier heating and spectral hole burning in strained-quantum well lasers,” IEEE Photon. Technol. Lett. 4, 682 (1992).
  34. A. N. Oraevsky, T. Sarkisyan, and D. K. Bandy, “Dynamics of the temperature of a recombining ensemble of fermions,” JETP Lett. 62, 674 (1995).
  35. D. Bimberg and J. Mycielski, “Recombination-induced heating of free carriers in a semiconductor,” Phys. Rev. B 31, 5490 (1985).
  36. K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, “Femtosecond gain dynamics in InGaAsP optical amplifiers,” Appl. Phys. Lett. 56, 1740 (1990).
  37. J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281 (1992).
  38. R. A. Indik, R. Binder, M. Mlejnek, J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614 (1996).
  39. M. Asada, A. Kameyama, and Y. Suematsu, “Gain and intervalence band absorption in quantum-well lasers,” IEEE J. Quantum Electron. QE-20, 745 (1984).
  40. G. E. Pikus, Fundamentals of the Theory of Semiconductor Devices (Nauka, Moscow, 1965).
  41. P. T. Landsberg, Recombination in Semiconductors (Cambridge U. Press, Cambridge, 1991).
  42. B. R. Nag, Theory of Electrical Transport in Semiconductors (Pergamon, London, 1972).
  43. R. Kubo, Statistical Mechanics (North-Holland, Amsterdam, 1971), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited