OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 3 — Mar. 1, 1998
  • pp: 1140–1146

Theoretical study of the recording density limit of a near-field photochromic memory

Tsuyoshi Tsujioka and Masahiro Irie  »View Author Affiliations


JOSA B, Vol. 15, Issue 3, pp. 1140-1146 (1998)
http://dx.doi.org/10.1364/JOSAB.15.001140


View Full Text Article

Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The recording density limit of a near-field optical memory that uses a photochromic medium was theoretically studied by use of Shannon’s information theory. Shot noise and material noise were taken into account in the analysis of the signal-to-noise ratio. The conventional recording density limit, which is defined by the inverse of the minimum recorded mark area, and Shannon’s recording density limit were evaluated. The conventional recording density limit was 1011–1012 bits/cm2, and Shannon’s recording density limit was 1012–1013 bits/cm2.

© 1998 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.4680) Optical data storage : Optical memories
(210.4770) Optical data storage : Optical recording

Citation
Tsuyoshi Tsujioka and Masahiro Irie, "Theoretical study of the recording density limit of a near-field photochromic memory," J. Opt. Soc. Am. B 15, 1140-1146 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-3-1140


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. A. Haase, “Blue-green II–V laser diodes: progress in reliability,” presented at the International Symposium on Optical Memory Optical Data Storage, Maui, Hawaii, July 8–12, 1996.
  2. J. Hirokane, Y. Murakami, H. Katayama, A. Takahashi, K. Ohta, and H. Yamaoka, “Recording characteristics of a magnet-optical super-resolution disk,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.
  3. A. Fukumoto and S. Kubota, “Superresolution of optical disks using a small aperture,” Jpn. J. Appl. Phys. 31, 529 (1992).
  4. G. Bouwhuis and J. H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3776 (1990).
  5. T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Super-resolution with a photochromic mask layer in an optical memory,” Opt. Rev. 2, 181 (1995).
  6. T. Tsujioka, T. Harada, M. Kume, K. Kuroki, and M. Irie, “Theoretical analysis of photon-mode super-resolution using saturable absorption dye,” Opt. Rev. 2, 225 (1995).
  7. T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photochromic mask layer,” Jpn. J. Appl. Phys. 36, 526 (1997).
  8. T. Tsujioka, M. Kume, and M. Irie, “Theoretical analysis of super-resolution optical disk mastering using a photoreactive dye mask layer,” Opt. Rev. 4, 655 (1997).
  9. T. Tanaka, K. Kawata, and S. Kawata, “Three-dimensional multi-layered optical memory with laser scanning microscope technology,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.
  10. J. H. Strickler and W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780 (1991).
  11. S. Hunter, F. Kiamilev, S. Esener, D. Parthenopoulos, and P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058 (1990).
  12. K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, and T. C. Strand, “Multilevel volumetric optical storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chan, and K. Ogawa, eds., Proc. SPIE 2338, 247 (1994).
  13. M. Suzuki, T. Hashida, J. Hibino, and Y. Kishimoto, “Multiple optical memory using photochromic spiropyran aggregates,” Mol. Cryst. Liq. Cryst. Lett. 246, 389 (1994).
  14. T. Tsujioka, Y. Shimizu, and M. Irie, “Crosstalk in photon-mode photochromic multi-wavelength recording,” Jpn. J. Appl. Phys. 33, 1914 (1994).
  15. T. Tsujioka, M. Kume, and M. Irie, “Optical density dependence of write/read characteristics in photon-mode-photochromic memory,” Jpn. J. Appl. Phys. 35, 4353 (1996).
  16. Y. Shimpuku, Y. Akiyama, T. Kashiwagi, H. Ino, and Y. Chaki, “A new channel coding and SHG green laser for high density optical disk,” presented at the Symposium on Optical Memory, Yokohama, Japan, July 13–15, 1992.
  17. S. Tazaki, “Recording code and signal processing for optical storage,” presented at the Symposium on Optical Memory, Tokyo, Japan, July 11–13, 1994.
  18. D. G. Crowe, “Near-field optical disk recording for very high data density,” Appl. Opt. 30, 4480 (1991).
  19. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, and P. L. Finn, “Near-field magnet-optics and high density data storage,” Appl. Phys. Lett. 61, 142 (1993).
  20. S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, “Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173 (1994).
  21. M. Hamano and M. Irie, “Rewritable near-field optical recording on photochromic thin films,” Jpn. J. Appl. Phys. 35, 1764 (1996).
  22. F. Tatezono, T. Harada, Y. Shimizu, M. Ohara, and M. Irie, “Photochromic rewritable memory media: a new nondestructive readout method,” Jpn. J. Appl. Phys. 32, 3987 (1993).
  23. M. Irie, ed., Photo-Reactive Materials for Ultrahigh Density Optical Memory (Elsevier, Amsterdam, 1994).
  24. N. Murase, K. Horie, M. Terao, and M. Ojima, “Theoretical study of the recording density limit of photochemical hole-burning memory,” J. Opt. Soc. Am. B 9, 998 (1992).
  25. T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and super-low power readout of photon-mode photochromic memory,” Jpn. J. Appl. Phys. 33, 5788 (1994).
  26. T. Tsujioka, M. Kume, and M. Irie, “Super-low power readout characteristics of photochromic memory,” Jpn. J. Appl. Phys. 34, 6439 (1995).
  27. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).
  28. K. Uchida, M. Irie, T. Eriguchi, and H. Tsuzuki, “Photochromism of single crystalline diarylethenes,” Chem. Lett., 899 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited