OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 4 — Apr. 1, 1998
  • pp: 1305–1308

Luminescence from neodymium-ion-implanted As2S3 waveguides

C. Meneghini, J. F. Viens, A. Villeneuve, É. J. Knystautas, M. A. Duguay, and K. A. Richardson  »View Author Affiliations

JOSA B, Vol. 15, Issue 4, pp. 1305-1308 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The luminescence of a neodymium-doped arsenic trisulfide planar waveguide at 1083 nm is reported. The dopant was introduced into the chalcogenide glass by ion implantation. The dopant distribution following ion implantation was predicted by molecular dynamic simulation and measured by Rutherford backscattering spectrometry. The most efficient pump wavelength was determined to be 818 nm. This observation of luminescence from rare-earth-ion implantation into chalcogenide glass, for the first time to the authors’ knowledge, suggests that this technique can be useful for rare-earth-doped devices.

© 1998 Optical Society of America

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2750) Materials : Glass and other amorphous materials
(160.5690) Materials : Rare-earth-doped materials
(230.3120) Optical devices : Integrated optics devices
(300.2530) Spectroscopy : Fluorescence, laser-induced

C. Meneghini, J. F. Viens, A. Villeneuve, É. J. Knystautas, M. A. Duguay, and K. A. Richardson, "Luminescence from neodymium-ion-implanted As2S3 waveguides," J. Opt. Soc. Am. B 15, 1305-1308 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. N. Kumta and S. H. Risbud, “Review: rare-earth chalcogenides—an emerging class of optical materials,” J. Mater. Sci. 29, 1135–1158 (1994). [CrossRef]
  2. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996). [CrossRef]
  3. P. W. France, Optical Fiber Lasers and Amplifiers, 1st ed. (CRC, Boca Raton, Fla., 1991), pp. 22–25.
  4. D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989). [CrossRef]
  5. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase-modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992). [CrossRef]
  6. K. A. Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and in thin film form,” submitted to Opt. Mater.
  7. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zannoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. LT-6, 953–970 (1988). [CrossRef]
  8. J. Wilson, G. I. Stegeman, and E. M. Wright, “Soliton switching in an erbium-doped nonlinear fiber coupler,” Opt. Lett. 16, 1653–1655 (1991). [CrossRef] [PubMed]
  9. Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium-doped arsenic sulfide fiber for 1.3 μm fiber amplifiers,” Appl. Phys. Lett. 65, 13–15 (1994). [CrossRef]
  10. J. Kirchhof, J. Kobelke, M. Scheffler, and A. Schwuchow, “As-S based materials and fibres towards efficient 1.3 μm fibre amplification,” Electron. Lett. 32, 1220–1221 (1996). [CrossRef]
  11. E. Snoeks, G. N. van den Hoven, A. Polman, B. Hendriksen, M. B. J. Diemeer, and F. Priolo, “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12, 1468–1474 (1995). [CrossRef]
  12. E. Snoeks, P. G. Kik, and Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. 5, 159–167 (1996). [CrossRef]
  13. A. Belykh, L. Glebov, C. Lerminiaux, S. Lunter, M. Mikhilov, A. Plyukhin, M. Prassas, and A. Przhevuskii, “Spectral and luminescence properties of neodymium in chalcogenide glasses,” J. Non-Cryst. Solids 213&214, 238–244 (1997). [CrossRef]
  14. A. Mori, Y. Ohishi, T. Kanamori, and S. Sudo, “Optical amplification with neodymium-doped chalcogenide glass fiber,” Appl. Phys. Lett. 70, 1230–1232 (1997). [CrossRef]
  15. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth-doped chalcogenide glass-fiber laser,” Electron. Lett. 33, 414–416 (1997). [CrossRef]
  16. Amorphous Materials, Inc., 3130 Benton Street, Garland, Tex. 75042–7410.
  17. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
  18. É. J. Knystautas, “Materials analysis using high-energy ion scattering,” Vol. CR69–12 of SPIE Critical Reviews (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1997), pp. 230–250.
  19. J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995). [CrossRef]
  20. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 124.
  21. Ref. 20, pp. 171–172.
  22. C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broad spectral bandwidth erbium doped fibre amplifier pumped near 1.5 μm,” Electron. Lett. 25, 910–911 (1989). [CrossRef]
  23. P. W. France, Ref. 3, pp. 25–26.
  24. W. J. Miniscalco, “Optical and electronics properties of rare earth ions in glasses,” in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 1993), pp. 38–42.
  25. E. Maurica, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited