OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 4 — Apr. 1, 1998
  • pp: 1335–1345

Simulation of Hamiltonian light-beam propagation in nonlinear media

Menashe Sonnenschein and Dan Censor  »View Author Affiliations


JOSA B, Vol. 15, Issue 4, pp. 1335-1345 (1998)
http://dx.doi.org/10.1364/JOSAB.15.001335


View Full Text Article

Acrobat PDF (375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The simulation of nonlinear wave propagation in the ray regime, i.e., in the limit of geometrical optics, is discussed. The medium involved is nonlinear, which means that the field amplitudes affect the constitutive parameters (e.g., dielectric constant) involved in the propagation formalism. Conventionally, linear ray propagation is computed by the use of Hamilton’s ray equations whose terms are derived from the appropriate dispersion equation. The formalism used to solve such a set of equations is the Runge–Kutta algorithm in one of its variants. In the present case of nonlinear propagation, a proper dispersion equation must first be established from which the rays can be computed. Linear ray tracing with Hamilton’s ray theory allows for the computation of ray trajectories and wave fronts. The convergence or divergence of rays suggests heuristic methods for computing the variation of amplitudes. Here, terms appearing in the Hamiltonian ray equations involve field amplitudes, which themselves are determined by the convergence (or divergence) of the rays. This dictates the simultaneous computation of a beam comprising many rays, so it is necessary to modify the original Runge–Kutta scheme by building into it some iteration mechanism such that the process converges to the values that take into account the amplitude effect. This research attempts to modify the existing propagation formalism and apply the new algorithm to simple problems of nonlinear ray propagation. The results display self-focusing effects characteristic of nonlinear optics problems. The influence of weak losses on the beam propagation and its self focusing is also discussed. Some displayed results obtained by simulating the modified formalism seem to be physically plausible and are in excellent agreement with experimental results reported in the literature.

© 1998 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(080.2710) Geometric optics : Inhomogeneous optical media
(160.4330) Materials : Nonlinear optical materials
(260.5950) Physical optics : Self-focusing

Citation
Menashe Sonnenschein and Dan Censor, "Simulation of Hamiltonian light-beam propagation in nonlinear media," J. Opt. Soc. Am. B 15, 1335-1345 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-4-1335

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited