OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 5 — May. 1, 1998
  • pp: 1463–1468

Optical characterization of Mn:YAlO3: material for holographic recording and data storage

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts  »View Author Affiliations

JOSA B, Vol. 15, Issue 5, pp. 1463-1468 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoinduced coloration and the holographic grating recording associated with it are experimentally studied in Mn-doped yttrium orthoaluminate (Mn:YAlO3). High diffraction efficiency is demonstrated in visible and in infrared light. The diffraction efficiency at 514.5 nm exceeds 50%. The strong energy exchange between the writing beams observed in a two-wave mixing experiment suggests that diffraction in Mn:YAlO3 is due to mainly nonlocal holographic effect and an electro-optical effect. Mn:YAlO3 is shown to be a promising material for holographic recording and optical storage.

© 1998 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.4670) Materials : Optical materials
(160.5320) Materials : Photorefractive materials
(160.6990) Materials : Transition-metal-doped materials
(210.4810) Optical data storage : Optical storage-recording materials

M. A. Noginov, N. Noginova, M. Curley, N. Kukhtarev, H. J. Caulfield, P. Venkateswarlu, and G. B. Loutts, "Optical characterization of Mn:YAlO3 : material for holographic recording and data storage," J. Opt. Soc. Am. B 15, 1463-1468 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. B. Loutts, M. Warren, L. Taylor, H. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H. J. Caulfield, and P. Venkateswarlu, “Manganese doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. Lett. 57, 3706–3709 (1988).
  2. S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, “Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn4+ in α-Al2O3,” Phys. Rev. 126, 1684–1686 (1962). [CrossRef]
  3. K. Peterman and G. Huber, “Broad band fluorescence of transition metal doped garnets and tungstates,” J. Lumin. 31 and 32, 71–77 (1994).
  4. U. Hömmerich, H. Eilers, W. M. Yen, and H. R. Verdun, “The optical center MnO43− in Y2SiO5:Mn, X (X=Al, Ca),” Chem. Phys. Lett. 213, 163–167 (1993). [CrossRef]
  5. A. Brener, A. Suchocki, C. Pedrini, G. Boulon, and C. Madej, “Spectroscopy of Mn4+-doped Ca-substituted gadolinium gallium garnet,” Phys. Rev. B 46, 3219–3227 (1992). [CrossRef]
  6. All ion concentrations in this paper are given according to their nominal values in the charge.
  7. Simple modeling shows that formula (1) adequately describes the initial stage of Mn5+ population kinetics also in the case of the two-photon excitation discussed in Section 4.
  8. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979). [CrossRef]
  9. S. A. Basun, S. P. Feofilov, and A. A. Kaplyanskii, “Photoelectric studies of two-step photoionization of Ti3+ ions in oxide crystals,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1992), pp. 333–335.
  10. S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.
  11. P. Dorenbos, M. V. Korzhik, A. P. Kudryavtseva, S. V. Lyubetskii, B. I. Minkov, V. B. Pavlenko, and A. A. Fyodorov, “Influence of growth defects on the scintillation characteristics of YAlO3:Ce single crystals,” J. Appl. Spectr. 59, 633 (1993). [CrossRef]
  12. V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).
  13. S. Geller and E. A. Wood, “Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3,” Acta Crystallogr. 9, 563–568 (1956). [CrossRef]
  14. R. Diehl and G. Brandt, “Crystal structure refinement of YAlO3, a promising laser material,” Mater. Res. Bull. 10, 85–90 (1975). [CrossRef]
  15. Descriptions of the shift in BaTiO3 are given in any textbook covering ferroelectricity, for example, C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986), p. 377; A. R. West, Solid State Chemistry and Its Application (Wiley, Chichester, UK, 1984), pp. 541–544.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited