OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 5 — May. 1, 1998
  • pp: 1469–1475

Approach to space-charge field description in photorefractive crystals

Eugenio DelRe, Alessandro Ciattoni, Bruno Crosignani, and Mario Tamburrini  »View Author Affiliations

JOSA B, Vol. 15, Issue 5, pp. 1469-1475 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent analytical results in the frame of photorefractive spatial-soliton propagation are exploited to derive a novel scheme for the investigation of space-charge field formation in photorefractive crystals. The procedure is specialized to describe a two-wave mixing configuration. To test our predictions, we have performed an experiment in a sample of BaTiO3.

© 1998 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials
(190.7070) Nonlinear optics : Two-wave mixing

Eugenio DelRe, Alessandro Ciattoni, Bruno Crosignani, and Mario Tamburrini, "Approach to space-charge field description in photorefractive crystals," J. Opt. Soc. Am. B 15, 1469-1475 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, Ferroelectrics 22, 961 (1979). [CrossRef]
  2. P. Günter and J. P. Huignard, eds., Photorefractive Materials and Their Applications I (Springer-Verlag, Berlin, 1988); Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin, 1989).
  3. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  4. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, UK, 1996).
  5. L. B. Au and L. Solymar, Opt. Lett. 13, 660 (1988). [CrossRef]
  6. M. G. Moharam, T. K. Gaylord, R. Magnusson, and L. Young, J. Appl. Phys. 50, 5642 (1979). [CrossRef]
  7. N. V. Kukhtarev, P. Buchhave, and S. F. Lyuksyutov, Phys. Rev. A 55, 3133 (1997). [CrossRef]
  8. Y. H. Lee and R. W. Hellwarth, J. Appl. Phys. 71, 916 (1992). [CrossRef]
  9. A. Bledowski, J. Otten, and K. H. Ringhofer, Opt. Lett. 16, 672 (1991). [CrossRef] [PubMed]
  10. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994). [CrossRef] [PubMed]
  11. M. Segev, M. Shih, and G. C. Valley, J. Opt. Soc. Am. B 13, 706 (1996). [CrossRef]
  12. B. Crosignani, P. Di Porto, A. Degasperis, M. Segev, and S. Trillo, J. Opt. Soc. Am. B 14, 3078–3090 (1997). [CrossRef]
  13. F. Vachss and L. Hesselink, J. Opt. Soc. Am. A 5, 690 (1988). [CrossRef]
  14. Conditions (17) express in a compact form the limitations imposed by our resolving scheme. The first is quite restrictive. Apart from the possibility of being relaxed at the cost of greater algebraic complexity, it has the advantage of being valid for all values of 0<m1<1. The condition on the drift field is related to the so-called saturation field and is easily verified in most doped crystals for standard applied voltages.
  15. A. Yariv, Optical Electronics, 5th ed. (Wiley, New York, 1995).
  16. J. H. Hong and R. Saxena, Opt. Lett. 16, 180 (1991). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited