OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 5 — May. 1, 1998
  • pp: 1610–1614

Modeling the propagation of ultrafast optical pulses in a semiconductor mirror and microcavities

S. P. Kennedy and R. T. Phillips  »View Author Affiliations

JOSA B, Vol. 15, Issue 5, pp. 1610-1614 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier methods are used to model the propagation of ultrashort pulses of light through GaAs/AlGaAs microcavities. Resonance effects are seen in the time dependence of field amplitude in the cavity, with the electric-field amplitude in the cavity center increasing in a similar time to the pulse duration but then decaying at a much slower rate, with a longer decay time for more reflective distributed Bragg mirrors, in agreement with experimental measurements. Two separate sets of novel transient peaks are quantitatively studied. Pulses longer than 100 fs produce peaks with decreasing period for increased detuning between pulse wavelength and cavity length. Shorter pulses with spectral content broader than the range of wavelengths for which the mirrors are highly reflective show transient peaks with period independent of detuning. These peaks could affect a wide range of experiments using ultrafast pulses to study microcavities.

© 1998 Optical Society of America

OCIS Codes
(320.7120) Ultrafast optics : Ultrafast phenomena

S. P. Kennedy and R. T. Phillips, "Modeling the propagation of ultrafast optical pulses in a semiconductor mirror and microcavities," J. Opt. Soc. Am. B 15, 1610-1614 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).
  2. S. W. Koch, F. Jahnke, and W. W. Chow, Semicond. Sci. Technol. 10, 739 (1995). [CrossRef]
  3. Y. Yamamoto and R. Slusher, Phys. Today 28, 66 (1993). [CrossRef]
  4. S. Haroche and D. Kleppner, Phys. Today 24(1), 24 (1989). [CrossRef]
  5. R. T. Phillips, Coherent Optical Interactions in Semiconductors: Proceedings of a NATO ARW Held in Cambridge, United Kingdom, August 11–14, 1993 (Plenum, New York, 1994).
  6. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer-Verlag, Berlin, 1996).
  7. T. B. Norris, J. K. Rhee, C. Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, Phys. Rev. B 55, 14663 (1994). [CrossRef]
  8. K. Tanaka, T. Nakamura, W. Takamatsu, M. Yamanishi, Y. Lee, and T. Ishira, Phys. Rev. Lett. 74, 3380 (1995). [CrossRef] [PubMed]
  9. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, UK, 1990).
  10. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, San Diego, Calif., 1982).
  11. M. Kira, F. Jahnke, and S. W. Koch, Solid State Commun. 102, 703 (1997). [CrossRef]
  12. J. L. Volakis and L. C. Kempel, IEEE Comput. Sci. Eng. 2(4), 24 (1995). [CrossRef]
  13. S. C. Hagness, R. M. Joseph, and A. Taflove, Radio Sci. 31, 931 (1996). [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  15. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge U. Press, Cambridge, UK, 1992).
  16. T. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies Press, Taunton, UK, 1995).
  17. G. Bongiovanni, A. Mura, F. Quochi, S. Guertler, J. L. Staehli, F. Tassone, R. P. Stanley, U. Oesterle, and R. Houdre, Phys. Rev. B 55, 7084 (1997). [CrossRef]
  18. F. Jahnke and S. Koch, Z. Phys. B 104, 559 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited