OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 6 — Jun. 1, 1998
  • pp: 1667–1673

Performance and design of an off-resonant continuous-wave Raman laser

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten  »View Author Affiliations

JOSA B, Vol. 15, Issue 6, pp. 1667-1673 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A steady-state theory that describes the performance of a cw off-resonant Raman laser is presented. The cw Raman laser is constructed in a nonconfocal high-finesse cavity that allows for high Raman gain with low pump powers. Threshold values of the pump laser used to pump the cw Raman laser are predicted to be as low as 1 mW. The maximum photon-conversion efficiency for the cw Raman laser is predicted to be 50%. The theory is compared with experimental results from a cw Raman laser that operates with a pump wavelength of 532 nm and a Stokes-shifted wavelength of 683 nm. A threshold pump power of 2 mW and a maximum photon-conversion efficiency of 34%±6% was measured. With the mirrors used in the experiment, these values correspond to the predictions from the steady-state cw Raman laser theory. The theoretical model is then used to design cw Raman lasers operate near the maximum conversion efficiency in the 1–4-μm wavelength region.

© 1998 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4780) Lasers and laser optics : Optical resonators
(190.5650) Nonlinear optics : Raman effect
(290.5860) Scattering : Scattering, Raman

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, "Performance and design of an off-resonant continuous-wave Raman laser," J. Opt. Soc. Am. B 15, 1667-1673 (1998)

Sort:  Year  |  Journal  |  Reset  


  1. K. S. Repasky, L. E. Watson, and J. L. Carlsten, “High-finesse interferometers,” Appl. Opt. 34, 2615 (1995). [CrossRef] [PubMed]
  2. K. S. Repasky, J. G. Wessel, and J. L. Carlsten, “Frequency stability of high-finesse interferometers,” Appl. Opt. 35, 609 (1996). [CrossRef] [PubMed]
  3. E. Hecht, Optics, 3rd ed. (Addison-Wesley, New York, 1998).
  4. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  5. N. Bloemberg, “The stimulated Raman effect,” Am. J. Phys. 35, 989 (1967). [CrossRef]
  6. Y. R. Shen and N. Bloemberg, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, 1787 (1965). [CrossRef]
  7. M. G. Raymer and J. Mostowski, “Stimulated Raman scat-tering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981). [CrossRef]
  8. P. Rabinowitz, A. Stein, R. Brickman, and A. Kaldor, “Efficient tunable H2 Raman lasers,” Appl. Phys. Lett. 35, 739 (1979). [CrossRef]
  9. L. A. Harris and J. N. Lavinos, “Generation of nanosecond infrared pulses tunable from 2.8 to 16 μm by efficient stimulated electronic Raman scattering,” Appl. Opt. 26, 3996 (1987). [CrossRef] [PubMed]
  10. J. L. Carlsten and R. G. Wenzel, “Stimulated Raman scattering in CO2-pumped para H2,” IEEE J. Quantum Electron. QE-19, 1407 (1983). [CrossRef]
  11. R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, “Far infrared cw Raman laser gain in 14NH3,” IEEE J. Quantum Electron. QE-17, 1123 (1981).
  12. M. Poelker and P. Kumar, “Sodium Raman laser: direct measurement of the narrow-band Raman gain,” Opt. Lett. 17, 399 (1992). [CrossRef] [PubMed]
  13. S. N. Jabr, “Gain and noise characteristics of a continuous-wave Raman laser,” Opt. Lett. 12, 690 (1987). [CrossRef] [PubMed]
  14. X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. W. Warrington, “Observation of cw stimulated Raman emission in the neon 2p-1s manifold,” Opt. Commun. 96, 99 (1993). [CrossRef]
  15. D. T. Cassidy, “Trace gas detection using 1.3 μm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610 (1988). [CrossRef] [PubMed]
  16. H. I. Schiff, ed., Measurement of Atmospheric Gases, Proc. SPIE 1433 (1991).
  17. A. Fried, D. K. Killinger, and H. I. Schiff, eds., Tunable Laser Spectroscopy, Lidar, and Dial Techniques for Environmental and Industrial Measurements, Proc. SPIE 2112, (1993).
  18. M. Ohtsu, H. Kotani, and H. Tagawa, “Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5 μm InGaAsP/InP diode lasers,” Jpn. J. Appl. Phys., 22, 1553 (1983). [CrossRef]
  19. P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer-Verlag, New York, 1989); see also R. G. Harrison and Weiping Lu, “Origin of periodic, chaotic, and bistable emission from a Raman laser,” Phys. Rev. Lett. 63, 1372 (1989) for a related theoretical treatment without pump depletion. [CrossRef] [PubMed]
  20. D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, “Stimulated Raman scattering in the visible in a multipass cell,” IEEE J. Quantum Electron. 24, 1741 (1989). [CrossRef]
  21. W. K. Bischel and M. J. Dyer, “Wavelength dependence of the absolute Raman gain coefficient for the Q(1) transition in H2,” J. Opt. Soc. Am. B 3, 677 (1986). [CrossRef]
  22. J. J. Ottusch and D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. 24, 2076 (1989). [CrossRef]
  23. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(0) and Q(1) transition in normal and para H2,” Phys. Rev. A 33, 3113 (1986). [CrossRef] [PubMed]
  24. The mirrors used for the cw Raman laser were purchased from Research ElectroOptics Inc., 1855 South 57th Court, Boulder, Colo., 80301.
  25. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23, 367 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited