OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 6 — Jun. 1, 1998
  • pp: 1674–1677

Charge-transport parameters of photorefractive strontium-barium niobate crystals doped with cerium

K. Buse, A. Gerwens, S. Wevering, and E. Krätzig  »View Author Affiliations


JOSA B, Vol. 15, Issue 6, pp. 1674-1677 (1998)
http://dx.doi.org/10.1364/JOSAB.15.001674


View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A complete set of charge-transport parameters of photorefractive cerium-doped strontium-barium niobate crystals is determined: the concentrations of filled and empty traps, the photon-absorption cross section, the quantum efficiency for excitation of an electron upon absorption of a photon, the recombination coefficient, and the charge-carrier mobility. These parameters are obtained evaluating optical absorption, conductivity, non-steady-state photocurrents, neutron-activation analysis, and x-ray photoelectron spectra. The effective absorption radius of the filled electron traps is small and the effective trapping radius is large compared with the ionic radii. Before recombination with deep levels the excited electrons are trapped several times by shallow levels. A detailed description of the charge transport is obtained, and the properties of optimized crystals are deduced.

© 1998 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials
(320.4240) Ultrafast optics : Nanosecond phenomena

Citation
K. Buse, A. Gerwens, S. Wevering, and E. Krätzig, "Charge-transport parameters of photorefractive strontium-barium niobate crystals doped with cerium," J. Opt. Soc. Am. B 15, 1674-1677 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-6-1674


Sort:  Year  |  Journal  |  Reset  

References

  1. K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977). [CrossRef]
  2. J. Ma, T. Y. Chang, J. H. Hong, and R. R. Neurgaonkar, “Enhancement of multiplexed holograms in cerium-doped Sr0.75Ba0.25Nb2O6,” Phys. Rev. Lett. 78, 2960 (1997). [CrossRef]
  3. T. Kume, K. Nonaka, and M. Yamamoto, “Wavelength-multiplexed holographic recording in cerium-doped strontium-barium niobate by using tunable laser diode,” Jpn. J. Appl. Phys. 35, 448 (1996). [CrossRef]
  4. A. Gerwens, M. Simon, K. Buse, and E. Krätzig, “Activation of cerium-doped strontium-barium niobate for infrared holographic recording,” Opt. Commun. 135, 347 (1997). [CrossRef]
  5. B. Monson, G. J. Salamo, A. G. Mott, M. J. Miller, E. J. Sharp, W. W. Clark III, G. L. Wood, and R. R. Neurgaonkar, “Self-pumped phase conjugation with nanosecond pulses in strontium barium niobate,” Opt. Lett. 15, 12 (1990). [CrossRef] [PubMed]
  6. A. E. T. Chiou and P. Yeh, “Beam cleanup using photorefractive two-wave mixing,” Opt. Lett. 10, 621 (1985). [CrossRef] [PubMed]
  7. A. S. Kewitsch, T. W. Towe, G. J. Salamo, A. Yariv, M. Zhang, M. Segev, E. J. Sharp, and R. R. Neurgaonkar, “Optically induced quasi-phase matching in strontium barium niobate,” Appl. Phys. Lett. 66, 1865 (1995). [CrossRef]
  8. K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6 crystals,” J. Opt. Soc. Am. B 13, 1461 (1996). [CrossRef]
  9. M. Simon, K. Buse, R. Pankrath, E. Krätzig, and A. A. Freschi, “Photoconductivity of photorefractive Sr0.61Ba0.39Nb2O6:Ce crystals,” J. Appl. Phys. 80, 251 (1996). [CrossRef]
  10. S. Wevering, K. Buse, M. Simon, R. Pankrath, and E. Krätzig, “Time-resolved measurements of photoconductivity in cerium-doped photorefractive strontium-barium niobate using nanosecond light pulses,” Opt. Commun. 148, 85 (1998). [CrossRef]
  11. N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215 (1998). [CrossRef]
  12. Th. Woike, G. Weckwerth, H. Palme, and R. Pankrath, “Instrumental neutron activation and absorption spectroscopy of photorefractive strontium-barium niobate single crystals doped with cerium,” Solid State Commun. 102, 743 (1997). [CrossRef]
  13. R. Niemann, K. Buse, R. Pankrath, and M. Neumann, “XPS study of photorefractive Sr0.61Ba0.39Nb2O6: Ce crystals,” Solid State Commun. 98, 209 (1996). [CrossRef]
  14. M. Simon, A. Gerwens, and E. Krätzig, “Light-induced absorption generated with high intensity laser pulses in strontium-barium niobate,” Phys. Status Solidi A 143, K125 (1994). [CrossRef]
  15. M. D. Ewbank, R. R. Neurgaonkar, W. K. Cory, and J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374 (1987). [CrossRef]
  16. S. Orlov, M. Segev, A. Yariv, and R. R. Neurgaonkar, “Light-induced absorption in photorefractive strontium barium niobate,” Opt. Lett. 19, 1293 (1994). [CrossRef] [PubMed]
  17. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).
  18. R. D. Shannon and C. T. Prewitt, “Effective ionic radii in oxides and fluorides,” Acta Crystallogr. Sec. B 25, 925 (1969). [CrossRef]
  19. R. R. Neurgaonkar and W. K. Cory, “Progress in photorefractive tungsten bronze crystals,” J. Opt. Soc. Am. B 3, 274 (1986). [CrossRef]
  20. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Cronin-Golomb, “Femtosecond temporal encoding in barium titanate,” Opt. Lett. 16, 1984 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited