OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 6 — Jun. 1, 1998
  • pp: 1698–1706

Sum-frequency generation from an isotropic chiral medium

Pao-Keng Yang and Jung Y. Huang  »View Author Affiliations


JOSA B, Vol. 15, Issue 6, pp. 1698-1706 (1998)
http://dx.doi.org/10.1364/JOSAB.15.001698


View Full Text Article

Enhanced HTML    Acrobat PDF (309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a theoretical analysis of nonlinear optical sum-frequency generation from the bulk of a chiral liquid in the dipole approximation. In our theoretical formulation the circular birefringence effect of a chiral medium was properly taken into account. The angular dependence of the reflected and transmitted sum-frequency signals on the incident angles of two input beams was calculated to yield the optimal geometry for probing bulk chirality. We also derived a microscopic expression for the totally antisymmetric part of a second-order nonlinear optical susceptibility to elaborate unique features in the studies of chirality-related properties with sum-frequency generation.

© 1998 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(260.1440) Physical optics : Birefringence

Citation
Pao-Keng Yang and Jung Y. Huang, "Sum-frequency generation from an isotropic chiral medium," J. Opt. Soc. Am. B 15, 1698-1706 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-6-1698


Sort:  Year  |  Journal  |  Reset  

References

  1. I. Gutman, V. Babovic, and S. Jokic, “The origin of biomolecular chirality: the generalized Frank model with arbitrary initial conditions,” Chem. Phys. Lett. 144, 187–190 (1988). [CrossRef]
  2. See, for example, A. W. Hall, J. Hollingshurst, and J. W. Goodby, “Chiral and achiral calamitic liquid crystals for display applications,” in Handbook of Liquid Crystal Research, P. J. Collings and J. S. Patel, eds. (Oxford U. Press, Oxford, 1997), Chap. 2.
  3. E. U. Condon, “Theories of optical rotatory power,” Rev. Mod. Phys. 9, 432–457 (1937). [CrossRef]
  4. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994). [CrossRef]
  5. T. Petralli-Mallow, T. M. Wong, J. D. Byers, H. I. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study,” J. Phys. Chem. 97, 1383–1388 (1993). [CrossRef]
  6. J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B 49, 14, 643–16, 647 (1994). [CrossRef]
  7. J. D. Byers and J. M. Hicks, “Electronic spectral effects on chiral surface second harmonic generation,” Chem. Phys. Lett. 231, 216–224 (1994). [CrossRef]
  8. J. M. Hicks, T. Petralli-Mallow, and J. D. Byers, “Consequences of chirality in second-order non-linear spectroscopy at surfaces,” Discuss. Faraday Soc. 99, 341–357 (1994). [CrossRef]
  9. T. Verbiest, M. Kauranen, J. J. Maki, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Linearly polarized probes of surface chirality,” J. Chem. Phys. 103, 8296–8298 (1995). [CrossRef]
  10. J. J. Maki, T. Verbiest, M. Kaurenen, S. V. Elshocht, and A. Persoons, “Comparison of linearly and circularly polarized probes of second-order optical activity of chiral surfaces,” J. Chem. Phys. 105, 767–772 (1996). [CrossRef]
  11. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 6.
  12. K. B. Eisenthal, “Equilibrium and dynamic processes at in terfaces by second harmonic and sum frequency generation,” Annu. Rev. Phys. Chem. 43, 627–661 (1992). [CrossRef]
  13. J. Y. Huang and Y. R. Shen, “Sum-frequency generation as a surface probe,” in Laser Spectroscopy and Photochemistry on Metal Surfaces, H. L. Dai and W. Ho, eds. (World Scientific, Singapore, 1995), Vol. 1, pp. 5–53.
  14. See, for example, G. Arfken, Mathematical Methods for Physicists (Academic, Orlando, Fla., 1985), Chap. 3.
  15. J. A. Giordmaine, “Nonlinear optical properties of liquids,” Phys. Rev. A 138, 1599–1606 (1965). [CrossRef]
  16. P. M. Rentzepis, J. A. Giordmaine, and K. W. Wecht, “Coherent optical mixing in optically active liquids,” Phys. Rev. Lett. 16, 762–794 (1966). [CrossRef]
  17. D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977–1979 (1962). [CrossRef]
  18. S. N. Volkov, N. I. Koroteev, and V. A. Makarov, “Sum-frequency generation by reflection of light from the surface of a nonabsorbing isotropic and gyrotropic medium,” Quantum Electron. 25, 1183–1187 (1995). [CrossRef]
  19. N. I. Koroteev, V. A. Makarov, and S. N. Volkov, “Sum fre-quency generation by reflection of light from the surface of a chiral medium,” Nonlinear Opt. 17, 247–269 (1997).
  20. P. Pelet, and N. Engheta, “The theory of chirowaveguides,” IEEE Trans. Antennas Propag. 38, 90–98 (1990). [CrossRef]
  21. S. Bassiri, C. H. Papas, and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450–1459 (1988). [CrossRef]
  22. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 2.
  23. J. F. Nicoud and R. J. Twieg, “Organic EFISH hyperpolarizability data,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 2, pp. 255–267.
  24. Q. Du, R. Superfine, E. Freysz, and Y. R. Shen, “Vibrational spectroscopy of water at the vapor/water interface,” Phys. Rev. Lett. 70, 2313–2316 (1993). [CrossRef] [PubMed]
  25. C. D. Stanners, Q. Du, R. P. Chin, P. Cremer, G. A. Somorjai, Y.-R. Shen, “Polar ordering at the liquid-vapor interface of n-alcohols (C1–C8),” Chem. Phys. Lett. 232, 407–413 (1995). [CrossRef]
  26. P. J. Stephens and M. A. Lowe, “Vibrational circular dichroism,” Annu. Rev. Phys. Chem. 36, 213–241 (1985). [CrossRef]
  27. T. B. Freedman and L. A. Nafie, “Stereochemical aspects of vibrational optical activity,” in Topics in Stereochemistry, E. Eliel and S. Wilen, eds. (Wiley, New York, 1987), pp. 113–206.
  28. D. Barron, “Methyl group as a probe of chirality in Raman optical activity,” Nature (London) 255, 458–460 (1975). [CrossRef]
  29. M. Diem, E. Photos, H. Khouri, and L. A. Nafie, “Vibrational circular dichroism in amino acids and peptides: 3. Solution- and solid-phase spectra of alanine and serine,” J. Am. Chem. Soc. 101, 6829–6837 (1979). [CrossRef]
  30. N. I. Koroteev, “New schemes for nonlinear optical spectroscopy of solutions of chiral biological macromolecules,” JETP 79, 681–690 (1994).
  31. J. L. Finney, “Hydration processes in biological and macromolucular systems,” Discuss. Faraday Soc. 103, 1–18 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited