OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 6 — Jun. 1, 1998
  • pp: 1757–1761

Spatial quantum noise of laser diodes

Jean-Philippe Poizat, Tiejun Chang, Olivier Ripoll, and Philippe Grangier  »View Author Affiliations


JOSA B, Vol. 15, Issue 6, pp. 1757-1761 (1998)
http://dx.doi.org/10.1364/JOSAB.15.001757


View Full Text Article

Acrobat PDF (198 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally study the transverse distribution of intensity noise in the far field of a single-mode semiconductor laser. We show that a large amount of noise is present in the higher-order nonlasing transverse modes (parallel to the diode junction). Furthermore, correlations between the TE00 and the TE10 modes are observed.

© 1998 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(270.3100) Quantum optics : Instabilities and chaos
(270.6570) Quantum optics : Squeezed states

Citation
Jean-Philippe Poizat, Tiejun Chang, Olivier Ripoll, and Philippe Grangier, "Spatial quantum noise of laser diodes," J. Opt. Soc. Am. B 15, 1757-1761 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-6-1757


Sort:  Year  |  Journal  |  Reset

References

  1. S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000 (1987).
  2. W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867 (1991).
  3. M. J. Freeman, H. Wang, D. G. Steel, R. Craig, and D. R. Scifres, “Wavelength-tunable amplitude-squeezed light from a room-temperature quantum-well laser,” Opt. Lett. 18, 2141 (1993).
  4. Yu. M. Golubev and I. V. Sokolov, Zh. Eksp. Teor. Fiz. 87, 804 (1984) [“Photon antibunching in a coherent light source and suppression of the photorecording noise,” Sov. Phys. JETP 60, 234 (1984)].
  5. Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025 (1986).
  6. A. W. Smith and J. A. Armstrong, “Intensity noise in multimode GaAs laser emission,” IBM J. Res. Dev. 10, 225 (1966).
  7. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 46, 2757 (1992).
  8. H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951 (1993).
  9. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606 (1995).
  10. D. C. Kilper and D. G. Steel, R. Craig, and D. R. Scifres, “Polarization-dependent noise in a photon-number squeezed light generated by quantum-well lasers,” Opt. Lett. 21, 1283 (1996).
  11. D. C. Kilper, P. A. Roos, J. L. Carlsten, and K. L. Lear, “Squeezed light generated by a microcavity laser,” Phys. Rev. A 55, R3323 (1997).
  12. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H.-A. Bachor, and I. Freitag, “Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source,” J. Opt. Soc. Am. B 14, 2936 (1997).
  13. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177 (1983).
  14. Two photodiodes were used on each arm of the balanced detection in order to avoid saturation.
  15. M. D. Levenson, W. H. Richardson, and S. H. Perlmutter, “Stochastic noise in TEM00 laser beam position,” Opt. Lett. 14, 779 (1989); M. D. Levenson, S. H. Perlmutter, and W. H. Richardson, “Stochastic position noise, or why a laser beam can not go straight,” in Quantum Optics, V, J. D. Harvey and D. F. Walls, eds. (Springer-Verlag, Heidelberg, 1989).
  16. M. J. Holland, M. J. Collett, D. F. Walls, and M. D. Levenson, “Nonideal quantum nondemolition measurements,” Phys. Rev. A 42, 2995 (1990).
  17. K. Petermann, “Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding,” IEEE J. Quantum Electron. 15, 566 (1979).
  18. H. A. Haus and S. Kawakami, “On the excess spontaneous emission factor in gain-guided laser amplifiers,” IEEE J. Quantum Electron. 21, 63 (1985).
  19. A. E. Siegman, “Excess spontaneous emission in non-Hermitian optical system. I. Laser amplifiers,” Phys. Rev. A 39, 1253 (1989); “Excess spontaneous emission in non-Hermitian optical system. I. Laser oscillators,” Phys. Rev. A 39, 1264 (1989); see also A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  20. P. Grangier and J.-Ph. Poizat, “A simple quantum picture for the Petermann excess noise factor,” Eur. J. Phys. D 1, 97 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited