OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 6 — Jun. 1, 1998
  • pp: 1762–1772

Interplay between the optical Kerr effect and stimulated light scattering in bulk carbon disulfide

K. D. Dorkenoo, A. J. van Wonderen, and G. Rivoire  »View Author Affiliations


JOSA B, Vol. 15, Issue 6, pp. 1762-1772 (1998)
http://dx.doi.org/10.1364/JOSAB.15.001762


View Full Text Article

Acrobat PDF (1438 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a lens of focal distance 10 cm, we sent plane-polarized optical pulses of wavelength 532 nm and duration 30 ps into a transparent cell of length 1 cm, filled with carbon disulfide at standard pressure and temperature. If a pulse generates at the focus of the lens an input intensity of at least I0=0.3 GW/cm2, then stimulated light scattering takes place, and we observe a strong backward-propagating signal. By monitoring its spectrum and transverse spatial profile as a function of input intensity, we found quantitative information on the optical Kerr effect. At input intensities of I0, 1.2I0, and 1.8I0, self-focusing leads to the formation of one, two, and four filaments, respectively. Each of these is subject to self-phase modulation and thus generates in the backward spectrum a frequency band of a granular structure. The latter can be perfectly reproduced by evaluating the Fourier transform of a phase-modulated electric field on the basis of the method of stationary phase. This allows us to calculate intensity and lifetime of a filament. If the input intensity exceeds the value of 1.8I0, fluctuations in refractive index destabilize the filamentation process. Backward spectra no longer consist of separate bands, and their shape varies at random during each series of laser shots. For input intensities higher than 3I0 the combined action of stimulated scattering and self-phase modulation causes the structure of spectra to become smooth. This explains why at an input intensity of 30I0 one observes for each laser shot a continuous backward spectrum, which possesses a large band that extends to relative wave numbers of approximately −200 cm−1.

© 1998 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5890) Nonlinear optics : Scattering, stimulated
(190.5940) Nonlinear optics : Self-action effects

Citation
K. D. Dorkenoo, A. J. van Wonderen, and G. Rivoire, "Interplay between the optical Kerr effect and stimulated light scattering in bulk carbon disulfide," J. Opt. Soc. Am. B 15, 1762-1772 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-6-1762


Sort:  Year  |  Journal  |  Reset

References

  1. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964); G. Mayer and F. Gires, “Action d’une onde lumineuse intense sur l’indice de réfraction des liquides,” C. R. Acad. Sci. 258, 2039–2042 (1964).
  2. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  3. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  4. P. Lallemand and N. Bloembergen, “Self-focusing of laser beams and stimulated Raman gain in liquids,” Phys. Rev. Lett. 15, 1010–1012 (1965); Y. R. Shen and Y. J. Shaham, “Beam deterioration and stimulated Raman effect,” Phys. Rev. Lett. 15, 1008–1010 (1965); G. Hauchecorne and G. Mayer, “Effets de l’anisotropie moléculaire sur la propagation d’une lumiere intense,” C. R. Acad. Sci. COREAF 261, 4014–4017 (1965).
  5. E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
  6. D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, “Stimulated scattering of light of the Rayleigh-line wing,” Pis’ma Zh. Eksp. Teor. Fiz. 2, 41–43 (1965) [ JETP Lett. 2, 25–27 (1965)].
  7. W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.
  8. E. J. Miller and R. W. Boyd, “Stimulated scattering of pico second optical pulses in the presence of self-focusing,” Int. J. Nonlinear Opt. Phys. 1, 765–773 (1992).
  9. D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98, 9279–9283 (1993).
  10. G. S. He and P. N. Prasad, “Stimulated Rayleigh–Kerr scattering in a CS2 liquid-core fiber system,” Opt. Commun. 73, 161–164 (1989); “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990); “Stimulated Rayleigh–Kerr and Raman–Kerr scattering in a liquid-core hollow fiber system,” Fiber Integr. Opt. FOIOD2 9, 11–26 (1990); G. S. He, G. C. Xu, Y. Pang, and P. N. Prasad, “Temporal behavior of stimulated Kerr scattering in a CS2 liquid-core hollow-fiber system,” J. Opt. Soc. Am. B JOBPDE 8, 1907–1913 (1991); G. S. He and G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. IEJQA7 28, 323–329 (1992); G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Opt. APOPAI 34, 444–454 (1995).
  11. J. Y. Zhou, H. Z. Wang, and Z. X. Yu, “Efficient generation of ultrafast broadband radiation in a submillimeter liquid-core waveguide,” Appl. Phys. Lett. 57, 643–644 (1990); J. Y. Zhou, H. Z. Wang, Y. C. Li, and Z. X. Yu, “Stimulated Rayleigh wing scattering and stimulated four-photon interaction in liquid-core waveguides,” J. Mod. Opt. 38, 1015–1019 (1991); J. Y. Zhou, H. Z. Wang, X. G. Huang, Z. G. Cai, and Z. X. Yu, “Generation of frequency-tunable ultrashort optical pulses with liquid-core fibers,” Opt. Lett. OPLEDP 16, 1865–1867 (1991); H. Z. Wang, X. G. Zheng, W. D. Mao, Z. X. Yu, and Z. L. Gao, “Stimulated dynamic light scattering,” Phys. Rev. A PLRAAN 52, 1740–1745 (1995).
  12. A. I. Erokhin, V. S. Starunov, and A. K. Shmelev, “Time evolution of stimulated Brillouin scattering during transverse laser pumping of carbon disulfide filling a capillary,” Pis’ma Zh. Eksp. Teor. Fiz. 60, 823–828 (1994) [ JETP Lett. 60, 837–842 (1994)]; V. S. Starunov and A. K. Shmelev, “Temporal structures of stimulated Raman scattering in a capillary-filling liquid with transverse laser pumping,” Pis’ma Zh. Eksp. Teor. Fiz. 62, 844–848 (1995) [ JETP Lett. 62, 855–859 (1995)].
  13. E. J. Miller, M. S. Malcuit, and R. W. Boyd, “Simultaneous wave-front and polarization conjugation of picosecond optical pulses by stimulated Rayleigh-wing scattering,” Opt. Lett. 15, 1188–1190 (1990).
  14. D. Wang, R. Barillé, and G. Rivoire, “Influence of propagation of optical pulses on stimulated Rayleigh wing scattering in a Kerr medium,” J. Opt. Soc. Am. B 14, 2584–2588 (1997).
  15. Y. R. Shen, “Self-focusing: experimental,” Prog. Quantum. Electron. 4, 1–34 (1975); O. Svelto, “Self-focusing, self-trapping, and self-phase modulation of laser beams,” Prog. Opt. 12, 1–51 (1974).
  16. H. Maillotte, J. Monneret, A. Barthelemy, and C. Froehly, “Laser beam self-splitting into solitons by optical Kerr nonlinearity,” Opt. Commun. 109, 265–271 (1994); H. Maillotte, J. Monneret, and C. Froehly, “Self-induced multiple soliton-like beams by stimulated scattering,” Opt. Commun. 109, 272–278 (1994).
  17. A. Brodeur, F. A. Ilkov, and S. L. Chin, “Beam filamentation and the white light continuum divergence,” Opt. Commun. 129, 193–198 (1996).
  18. M. L. Dowell, B. D. Paul, A. Gallagher, and J. Cooper, “Self-focused light propagation in a fully saturable medium: theory,” Phys. Rev. A 52, 3244–3253 (1995); P. K. Shukla and R. Bingham, “Filamentation instability and localization of finite amplitude optical pulses in saturable nonlinear media,” Phys. Scr. 52, 199–200 (1995); Y. Chen and J. Atai, “Solitary waves of Maxwell’s equations in nonlinear anisotropic media,” J. Mod. Opt. JMOPEW 42, 1649–1658 (1995); S. Chi and Q. Guo, “Vector theory of self-focusing of an optical beam in Kerr media,” Opt. Lett. OPLEDP 20, 1598–1600 (1995); C. S. Milsted, Jr., and C. D. Cantrell, “Vector effects in self-focusing,” Phys. Rev. A PLRAAN 53, 3536–3542 (1996); G. Fibich, “Adiabatic law for self-focusing of optical beams,” Opt. Lett. OPLEDP 21, 1735–1737 (1996).
  19. F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19, 1097–1100 (1967).
  20. G. S. He, G. C. Xu, Y. Cui, and P. N. Prasad, “Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses,” Appl. Opt. 32, 4507–4512 (1993).
  21. M. Vampouille, B. Colombeau, and C. Froehly, “Application du contro⁁le de l’autofocalisation dans CS2 au raccourcissement d’impulsions laser picoseconde,” Opt. Quantum Electron. 14, 253–261 (1982).
  22. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980), Sect. 1.3.
  23. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979); C. E. Barker, R. Trebino, A. G. Kostenbauder, and A. E. Siegman, “Frequency-domain observation of the ultrafast inertial response of the optical Kerr effect in CS2,” J. Chem. Phys. 92, 4740–4748 (1990). All important references can be found in these papers.
  24. T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969); J. Reintjes, R. L. Carman, and F. Shimizu, “Study of self-focusing and self-phase modulation in the picosecond-time regime,” Phys. Rev. A 8, 1486–1503 (1973).
  25. R. Polloni, C. A. Sacchi, and O. Svelto, “Self-trapping with picosecond pulses and ‘rocking’ of molecules,” Phys. Rev. Lett. 23, 690–693 (1969).
  26. R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, “Self-phase modulation and ‘rocking’ of molecules in trapped filaments of light with picosecond pulses,” Phys. Rev. A 2, 1955–1963 (1970).
  27. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  28. M. R. Topp and G. C. Orner, “Group dispersion effects in picosecond spectroscopy,” Opt. Commun. 13, 276–281 (1975).
  29. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970); “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970); A. Penzkofer, A. Laubereau, and W. Kaiser, “Stimulated short-wave radiation due to single-frequency resonances of χ(3),” Phys. Rev. Lett. PRLTAO 31, 863–866 (1973); D. J. Harter and R. W. Boyd, “Four-wave mixing resonantly enhanced by ac-Stark-split levels in self-trapped filaments of light,” Phys. Rev. A PLRAAN 29, 739–748 (1984).
  30. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, “Observation of pulse splitting in nonlinear dispersive media,” Phys. Rev. Lett. 77, 3783–3786 (1996); P. Chernev and V. Petrov, “Self-focusing of short light pulses in dispersive media,” Opt. Commun. 87, 28–32 (1992); “Self-focusing of light pulses in the presence of normal group-velocity dispersion,” Opt. Lett. OPLEDP 17, 172–174 (1992); J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett. OPLEDP 17, 583–585 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited