OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2255–2268

Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides

Roland Schiek, Yongsoon Baek, and George I. Stegeman  »View Author Affiliations

JOSA B, Vol. 15, Issue 8, pp. 2255-2268 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We summarize and discuss the results of our second-harmonic generation experiments in titanium-indiffused lithium niobate optical channel waveguides. The wave-vector mismatch in the nonlinear wave interaction was varied with temperature tuning around the second-harmonic resonances. Fundamental depletion and second-harmonic tuning curves show a strong power dependence, which is an indication of an intensity-dependent wave-vector modification of the interacting modes. This nonlinear refractive effect (which is called cascaded nonlinearity) is characterized with interferometric measurements of the resulting nonlinear phase shift of the fundamental. Large nonlinear phase shifts (>2π) appear in regions of low fundamental depletion (<10%) because of a nonuniform wave-vector mismatch along the waveguide. At resonance a maximum fundamental depletion of more than 90% was observed. All the measured results are explained well theoretically with a coupled-mode model that has proved to be a reliable design tool for fabricating waveguide devices for applications of the cascaded nonlinearity.

© 1998 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3730) Integrated optics : Lithium niobate
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing

Roland Schiek, Yongsoon Baek, and George I. Stegeman, "Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides," J. Opt. Soc. Am. B 15, 2255-2268 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  3. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18, 13–15 (1993). [CrossRef] [PubMed]
  4. R. Schiek, “Nonlinear refraction caused by cascaded second-order nonlinearity in optical waveguide structures,” J. Opt. Soc. Am. B 10, 1848–1855 (1993). [CrossRef]
  5. N. R. Belashenkov, S. V. Gagarskii, and M. V. Inochkin, “Nonlinear refraction of light on second-harmonic generation,” Opt. Spectrosc. (USSR) 66, 806–808 (1989).
  6. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, E. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992). [CrossRef] [PubMed]
  7. M. I. Sundheimer, C. Bosshard, E. W. Van Stryland, G. I. Stegeman, and J. D. Bierlein, “Large nonlinear phase modulation in quasi-phase-matched KTP waveguides due to cascaded second-order processes,” Opt. Lett. 18, 1397–1399 (1993). [CrossRef] [PubMed]
  8. R. Schiek, M. L. Sundheimer, D. Y. Kim, Y. Baek, G. I. Stegeman, H. Seibert, and W. Sohler, “Direct measurement of cascaded nonlinearity in lithium niobate channel waveguides,” Opt. Lett. 19, 1949–1951 (1994). [CrossRef] [PubMed]
  9. Y. Baek, R. Schiek, and G. I. Stegeman, “All-optical switching in a hybrid Mach–Zehnder interferometer as a result of cascaded second-order nonlinearity,” Opt. Lett. 20, 2168–2170 (1995). [CrossRef]
  10. P. Vidaković, D. J. Lovering, J. A. Levenson, J. Webjörn, and P. St. J. Russell, “Large nonlinear phase shift owing to cascaded χ(2) in quasi-phase-matched bulk LiNbO3,” Opt. Lett. 22, 277–279 (1997). [CrossRef]
  11. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression, and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  12. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995). [CrossRef] [PubMed]
  13. R. Schiek, Y. Baek, and G. I. Stegeman, “One-dimensional spatial solitary waves due to cascaded second-order nonlinearities in planar waveguides,” Phys. Rev. E 53, 1138–1141 (1996). [CrossRef]
  14. Y. Baek, R. Schiek, G. I. Stegeman, G. Krijnen, I. Baumann, and W. Sohler, “All-optical integrated Mach–Zehnder switching due to cascaded nonlinearities,” Appl. Phys. Lett. 68, 2055–2057 (1996). [CrossRef]
  15. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett. 21, 940–942 (1996). [CrossRef] [PubMed]
  16. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled LiNbO3,” Opt. Lett. 22, 274–276 (1997). [CrossRef] [PubMed]
  17. H. Seibert, “Neue Methoden der Phasenanpassung optisch nichtlinearer Wechselwirkungen in Ti:LiNbO3- und HxLi1−xNbO3-Streifenwellenleitern,” Ph.D. dissertation (Universität Paderborn, Paderborn, Germany, 1992).
  18. G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. 23, 42–51 (1987). [CrossRef]
  19. E. Strake, G. P. Bava, and I. Montrosset, “Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with a scalar finite-element method,” J. Lightwave Technol. 6, 1126–1135 (1988). [CrossRef]
  20. W. K. Burns, P. H. Klein, and E. J. West, “Ti diffusion in Ti:LiNbO3 planar and channel optical waveguides,” J. Appl. Phys. 50, 6175–6182 (1979). [CrossRef]
  21. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984). [CrossRef]
  22. M. Fejer, Ginston Laboratory, Stanford University, Stanford, California 94305–4085 (personal communication, 1996).
  23. R. Schiek, H. Fang, and G. I. Stegeman, “Measurement of the non-uniformity of the wave-vector mismatch in waveguides for second-harmonic generation,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 256–258.
  24. A. Kobyakov and F. Lederer, “Cascading of quadratic nonlinearities—a comprehensive analytical study,” Phys. Rev. A 54, 3455–3471 (1996). [CrossRef] [PubMed]
  25. R. Schiek, “Die Selbstbeeinflussung von Licht in nichtlinearen dielektrischen Schichten,” Ph.D. dissertation (Technische Universität München, Munich, Germany, 1987).
  26. R. Schiek, “Soliton-like pulse propagation and second harmonic generation in waveguides with second-order optical nonlinearities,” AEÜ Int. J. Electron. Commun. 51, 77–86 (1997).
  27. K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, and M. W. Beranek, “Pulse-modulated interferometer for measuring intensity-induced phase shifts,” IEEE J. Quantum Electron. 28, 2044–2050 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited