OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2269–2275

Four-wave mixing in fibers with randomly varying zero-dispersion wavelength

Magnus Karlsson  »View Author Affiliations


JOSA B, Vol. 15, Issue 8, pp. 2269-2275 (1998)
http://dx.doi.org/10.1364/JOSAB.15.002269


View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of random fluctuations in the zero-dispersion wavelength is considered for fiber four-wave mixing. Theoretical expressions for average parametric gain, phase-conjugation conversion efficiency, and gain bandwidth are obtained and found to be in good agreement with experiments. Possible limitations on the noise figure in phase-sensitive amplifiers based on fiber four-wave mixing are also discussed.

© 1998 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5040) Nonlinear optics : Phase conjugation

Citation
Magnus Karlsson, "Four-wave mixing in fibers with randomly varying zero-dispersion wavelength," J. Opt. Soc. Am. B 15, 2269-2275 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-8-2269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982). [CrossRef]
  2. N. Kagi, T.-K. Chiang, M. E. Marhic, and L. G. Kazovsky, “Fiber optical parametric amplifier operating near zero-dispersion wavelength,” Electron. Lett. 31, 1935–1937 (1995). [CrossRef]
  3. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21, 573–575 (1996). [CrossRef] [PubMed]
  4. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Opt. Lett. 21, 1354–1356 (1996). [CrossRef] [PubMed]
  5. P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, “16 Gbit/s all-optical demultiplexing using four-wave mixing,” Electron. Lett. 27, 922–924 (1992). [CrossRef]
  6. P. O. Hedekvist and P. A. Andrekson, “Demonstration of fiber four-wave mixing optical demultiplexing with 19 dB parametric amplification,” Electron. Lett. 32, 830–831 (1996). [CrossRef]
  7. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15, 2051–2058 (1997). [CrossRef]
  8. T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, and M. Saruwatari, “Error-free 500 Gbit/s all optical demultiplexing using low-noise, low-jitter supercontinuum short pulses,” Electron. Lett. 32, 833–834 (1996). [CrossRef]
  9. T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, and M. Saruwatari, “Polarization independent 100 Gbit/s all-optical demultiplexer using four-wave mixing in a polarization maintaining fiber loop,” Electron. Lett. 30, 591–592 (1994). [CrossRef]
  10. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4, 52–54 (1979). [CrossRef] [PubMed]
  11. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photonics Technol. Lett. 8, 776–778 (1996). [CrossRef]
  12. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984). [CrossRef] [PubMed]
  13. M. N. Islam, S. P. Dijaili, and J. P. Gordon, “Modulation-instability-based fiber interferometer switch near 1.5 μm,” Opt. Lett. 13, 518–520 (1988). [CrossRef] [PubMed]
  14. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, “Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers,” Opt. Lett. 21, 1354–1356 (1996). [CrossRef] [PubMed]
  15. I. Bar-Joseph, A. A. Friesem, R. G. Waarts, and H. H. Yaffe, “Parametric interaction of a modulated wave in a single-mode fiber,” Opt. Lett. 11, 534–536 (1986). [CrossRef] [PubMed]
  16. G. Cappellini and S. Trillo, “Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects,” J. Opt. Soc. Am. B 8, 824–838 (1991). [CrossRef]
  17. R.-D. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive amplifiers,” J. Lightwave Technol. 12, 541–549 (1994). [CrossRef]
  18. C. G. Goedde, W. L. Kath, and P. Kumar, “Compensation of the soliton self-frequency shift with phase-sensitive amplifiers,” Opt. Lett. 19, 2077–2079 (1994). [CrossRef] [PubMed]
  19. J. N. Kutz, W. L. Kath, R.-D. Li, and P. Kumar, “Long-distance pulse propagation in nonlinear optical fibers by using periodically spaced parametric amplifiers,” Opt. Lett. 18, 802–804 (1993). [CrossRef] [PubMed]
  20. J. A. Levenson, I. Abraham, Th. Rivera, and Ph. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B 10, 2233–2238 (1993). [CrossRef]
  21. I. H. Deutsch and I. Abram, “Reduction of quantum noise in soliton propagation by phase-sensitive amplification,” J. Opt. Soc. Am. B 11, 2303–2313 (1994). [CrossRef]
  22. W. Imajuku and A. Takada, “Optical phase-sensitive amplification using two phase-locked light sources,” Electron. Lett. 33, 1403–1404 (1997). [CrossRef]
  23. K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10, 1553–1561 (1992). [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), Chap. 10.
  25. L. B. Jeunhomme, Single-Mode Fiber Optics, Principles and Applications, 2nd ed. (Marcel Dekker, New York, 1990), Chap. 4.3.
  26. N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8, 1476–1481 (1990). [CrossRef]
  27. S. Nishi and M. Saruwatari, “Technique for measuring the distributed zero dispersion wavelength of optical fibers using pulse amplification caused by modulation instability,” Electron. Lett. 31, 225–226 (1995). [CrossRef]
  28. H. Onaka, K. Otsuka, H. Miyata, and T. Chikama, “Measuring the longitudinal distribution of four-wave mixing efficiency in dispersion shifted fibers,” IEEE Photonics Technol. Lett. 6, 1454–1456 (1994). [CrossRef]
  29. R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Nondestructive dispersion-zero measurements along an optical fiber,” Electron. Lett. 31, 2115–2117 (1995). [CrossRef]
  30. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, “Method for facile and accurate measurement of optical fiber dispersion maps,” Opt. Lett. 21, 1724–1726 (1996). [CrossRef] [PubMed]
  31. K. Nakajima, M. Ohashi, and M. Tateda, “Chromatic dispersion distribution along a single-mode optical fiber,” J. Lightwave Technol. 15, 1095–1101 (1997). [CrossRef]
  32. M. Karlsson, “Modulational instability in lossy optical fibers,” J. Opt. Soc. Am. B 12, 2071–2077 (1995).
  33. K. Kikuchi and C. Lorattanasane, “Design of highly efficient four-wave mixing devices using optical fibers,” IEEE Photonics Technol. Lett. 6, 992–994 (1994). [CrossRef]
  34. S. Wabnitz, “Nonlinear enhancement and optimization of phase-conjugation efficiency in optical fibers,” IEEE Photonics Technol. Lett. 7, 652–654 (1995). [CrossRef]
  35. The effective length is defined as zeff=Lloss[1− exp(−z/Lloss)], where z is the propagation distance and Lloss is the loss length (a fiber loss of 0.2 dB/km corresponds to Lloss=21 km).
  36. D. Anderson and A. Bondeson, “Parametric wave interactions in random media,” Phys. Scr. 14, 324–328 (1976); “Influence of random inhomogeneities on parametric interactions,” Phys. Scr. 15, 56–58 (1977). [CrossRef]
  37. G. Laval, R. Pellat, and D. Pesme, “Absolute parametric excitation by an imperfect pump or by turbulence in an inhomogeneous plasma,” Phys. Rev. Lett. 36, 192–196 (1976). [CrossRef]
  38. F. Kh. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, “Modulational instability in optical fibers with variable dispersion,” Phys. Lett. A 220, 213–218 (1996). [CrossRef]
  39. K. Inoue, “Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing,” Opt. Lett. 19, 1189–1191 (1994). [CrossRef] [PubMed]
  40. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982). [CrossRef]
  41. C. M. Caves and D. D. Crouch, “Quantum wideband traveling-wave analysis of a degenerate parametric amplifier,” J. Opt. Soc. Am. B 4, 1535–1545 (1987). [CrossRef]
  42. A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed. (McGraw-Hill, New York, 1991), Chap. 11–3.
  43. S. Karlin and H. M. Taylor, A Second Course in Stochastic Processes (Academic, New York, 1981), Chap. 15.14.
  44. G. J. Foschini and C. D. Poole, “Statistical theory of polarization mode dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991). [CrossRef]
  45. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148–157 (1996). [CrossRef]
  46. A. Einstein, “On the theory of Brownian movement,” Ann. Phys. (Leipzig) 19, 371–381 (1906) (in German), reprinted in English in A. Einstein, Investigations on the Theory of the Brownian Movement (Dover, New York, 1956). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited