OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2298–2307

Separated-beam nonphase-matched second-harmonic method of characterizing nonlinear optical crystals

Russell J. Gehr and A. V. Smith  »View Author Affiliations

JOSA B, Vol. 15, Issue 8, pp. 2298-2307 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a variation of the wedge method of Maker-fringe measurement in which the fundamental beam diameter is large enough to contain several second-harmonic coherence fringes. In the far field the second harmonic forms spatially separated beams from which both Δks and deffs can be deduced on a single laser pulse. Analysis is simple because no fringe analysis is required and because the method is immune to multiple surface reflections, birefringent walk-off, group-velocity walk-off, and surface effects such as longitudinal polarization. Example measurements on KDP and LiIO3 are presented.

© 1998 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials

Russell J. Gehr and A. V. Smith, "Separated-beam nonphase-matched second-harmonic method of characterizing nonlinear optical crystals," J. Opt. Soc. Am. B 15, 2298-2307 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, New York, 1996).
  2. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962). [CrossRef]
  3. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970). [CrossRef]
  4. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416–427 (1995). [CrossRef]
  5. D. Chemla and P. Kupecek, “Analyse des experiences de generation de second harmonique,” Rev. Phys. Appl. 6, 31–50 (1971). [CrossRef]
  6. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976). [CrossRef]
  7. R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988). [CrossRef]
  8. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]
  9. Y. Yamamoto, T. Ashida, S. Kurimura, and Y. Uesu, “Two-dimensional observation of the Maker fringe and its application to the poling state evaluation of ferroelectric domains,” Appl. Opt. 36, 602–605 (1997). [CrossRef] [PubMed]
  10. S. Kurimura and Y. Uesu, “Application of the second-harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81, 369–375 (1997). [CrossRef]
  11. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962). [CrossRef]
  12. N. Okamoto, Y. Hirano, and O. Sugihara, “Precise estimation of nonlinear-optical coefficients for nonlinear films with C∞V symmetry,” J. Opt. Soc. Am. B 9, 2083–2087 (1992). [CrossRef]
  13. A. V. Smith and M. S. Bowers, “Phase distortions in sum- and difference-frequency mixing in crystals,” J. Opt. Soc. Am. B 12, 49–57 (1995); A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2276 (1995). SNLO freeware for modeling χ2 nonlinear optics is available from A. V. Smith. [CrossRef]
  14. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1997).
  15. K. Kato, “High-power difference-frequency generation at 4.4–5.7 μm in LiIO3,” IEEE J. Quantum Electron. QE-21, 119–120 (1985). [CrossRef]
  16. M. Okada and S. Ieiri, “Kleinman’s symmetry relation in non-linear optical coefficient of LiIO3,” Phys. Lett. A 34, 63–64 (1971). [CrossRef]
  17. J. Jerphagnon, “Optical nonlinear susceptibilities of lithium iodate,” Appl. Phys. Lett. 16, 298–299 (1970). [CrossRef]
  18. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992). [CrossRef]
  19. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990). [CrossRef]
  20. G. Nath and S. Haussühl, “Large nonlinear optical coefficient and phase matched second harmonic generation in LiIO3,” Appl. Phys. Lett. 14, 154–156 (1969). [CrossRef]
  21. A. J. Campillo and C. L. Tang, “Spontaneous parametric scattering of light in LiIO3,” Appl. Phys. Lett. 16, 242–244 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited