OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2316–2324

Resonant modes of two-dimensional photonic bandgap cavities determined by the finite-element method and by use of the anisotropic perfectly matched layer boundary condition

Jeong-Ki Hwang, Seok-Bong Hyun, Han-Youl Ryu, and Yong-Hee Lee  »View Author Affiliations

JOSA B, Vol. 15, Issue 8, pp. 2316-2324 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The finite-element approach to the eigenmode analysis of a photonic bandgap cavity by use of an anisotropic perfectly matched layer absorbing boundary is presented. This method rigorously calculates the resonant frequency, the field pattern, and the quality factor of the resonant mode of a finite-sized cavity in free space. The validity of the approach is examined through its application to two-dimensional photonic bandgap cavities. Analyses of numerical error for the resonant frequencies and the quality factor of the cavities demonstrate the accuracy and reliability of our approach, which used nonuniform grids, higher-order elements, and the perfectly matched layer. Far-field patterns of the resonant modes were obtained by simple transformation. Because the perfectly matched layer can represent the real boundary condition well, cavities of any size and shape can be analyzed with the desired accuracy.

© 1998 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3410) Lasers and laser optics : Laser resonators
(230.3670) Optical devices : Light-emitting diodes
(230.5750) Optical devices : Resonators
(260.2110) Physical optics : Electromagnetic optics

Jeong-Ki Hwang, Seok-Bong Hyun, Han-Youl Ryu, and Yong-Hee Lee, "Resonant modes of two-dimensional photonic bandgap cavities determined by the finite-element method and by use of the anisotropic perfectly matched layer boundary condition," J. Opt. Soc. Am. B 15, 2316-2324 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997). [CrossRef]
  4. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef] [PubMed]
  5. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991). [CrossRef]
  6. P. R. Villeneuve and M. Piché, “Photonic band gaps in two-dimensional square lattices: square and circular rods,” Phys. Rev. B 46, 4973–4975 (1992). [CrossRef]
  7. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994). [CrossRef]
  8. E. Yablonovitch, T. M. Gmitter, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef] [PubMed]
  9. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991). [CrossRef]
  10. S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995). [CrossRef]
  11. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996). [CrossRef]
  12. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in a photonic crystal waveguide,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  13. R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993). [CrossRef]
  14. A. A. Maradudin and A. R. McGurn, “Photonic band structures of two-dimensional dielectric media,” in Photonic Band Gap and Localization, C. M. Soukoulis, ed. (Plenum, New York, 1993), pp. 247–268.
  15. A. R. McGurn, “Green’s-function theory for row and periodic defect arrays in photonic band structures,” Phys. Rev. B 53, 7059–7064 (1996). [CrossRef]
  16. K. Sakoda and H. Shiroma, “Numerical method for localized defect modes in photonic lattices,” Phys. Rev. B 56, 4830–4835 (1997). [CrossRef]
  17. K. Sakoda, T. Ueta, and K. Ohtaka, “Numerical analysis of eigenmodes localized at line defects in photonic lattices,” Phys. Rev. B 56, 14905–14908 (1997). [CrossRef]
  18. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996). [CrossRef]
  19. J. B. Pendry and A. Mackinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69, 2772–2775 (1992). [CrossRef] [PubMed]
  20. K. M. Leung and Y. Qiu, “Multiple-scattering calculation of the two-dimensional photonic band structure,” Phys. Rev. B 48, 7767–7771 (1993). [CrossRef]
  21. D. Maystre, G. Tayeb, and D. Felbacq, “Electromagnetic study of photonic band structures and anderson localization,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 153–163.
  22. C. C. Cheng and A. Scherer, “Lithographic band gap tuning in photonic band gap crystals,” J. Vac. Sci. Technol. B 14, 4110–4114 (1996). [CrossRef]
  23. M. Kanskar, P. Paddon, V. Pacradoui, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997). [CrossRef]
  24. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1995), Chaps. 5, 8, 11.
  25. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  26. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). [CrossRef]
  27. J. Jin, The Finite Element Method in Electromagnetics (Wiley-Interscience, New York, 1993), Chaps. 4, 7.
  28. S. Hyun, J. Hwang, Y. Lee, and S. Kim, “Computation of resonant modes of open resonators using the FEM and the anisotropic perfectly matched layer boundary condition,” Microwave Opt. Technol. Lett. 16, 352–356 (1997). [CrossRef]
  29. R. Lee and A. C. Cangellaris, “A study of discretization error in the finite element approximation of wave solutions,” IEEE Trans. Antennas Propag. 40, 542–549 (1992). [CrossRef]
  30. O. C. Zienkiewicz, The Finite Element Method (McGraw-Hill, Singapore, 1989), Vol. 1, Chap. 8.
  31. C. R. I. Emson, “Methods for the solution of open-boundary electromagnetic-field problems,” Proc. Inst. Electr. Eng. Part A 135, 151–158 (1988).
  32. K. Hayata, M. Eguchi, and M. Koshiba, “Self-consistent finite/infinite element scheme for unbounded guided wave problems,” IEEE Trans. Microwave Theory Tech. MTT-36, 614–616 (1988). [CrossRef]
  33. J. N. Reddy, An Introduction to the Finite Element Method (McGraw-Hill, Singapore, 1993), Chap. 9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited