OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2338–2345

Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals

Sarah M. Gallagher, Allison W. Albrecht, John D. Hybl, Brett L. Landin, Bhavani Rajaram, and David M. Jonas  »View Author Affiliations


JOSA B, Vol. 15, Issue 8, pp. 2338-2345 (1998)
http://dx.doi.org/10.1364/JOSAB.15.002338


View Full Text Article

Acrobat PDF (345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel optimized heterodyne method that recovers the complete electric field of any four-wave mixing signal at its point of origin is demonstrated. A tracer pulse is sent along the signal path and characterized at the sample by frequency-resolved optical gating. Spectral interferometry is used to determine the phase difference between the tracer and a reference pulse, the absorptive change in tracer phase in the sample, and the reference-signal phase difference. Together, these measurements allow calculation of the signal phase at the sample. The phase of three pulse-scattering signals from solutions of the infrared dye IR 144 in methanol determines the absolute signal-emission time within 0.5 fs.

© 1998 Optical Society of America

OCIS Codes
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(320.7100) Ultrafast optics : Ultrafast measurements

Citation
Sarah M. Gallagher, Allison W. Albrecht, John D. Hybl, Brett L. Landin, Bhavani Rajaram, and David M. Jonas, "Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals," J. Opt. Soc. Am. B 15, 2338-2345 (1998)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-15-8-2338


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
  2. I. Solomon, “Multiple echoes in solids,” Phys. Rev. 110, 61–65 (1957).
  3. W. B. Mims, K. Nassau, and J. D. McGee, “Spectral diffusion in electron resonance lines,” Phys. Rev. 123, 2059–2069 (1961).
  4. J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy: A Guide for Chemists (Oxford U. Press, Oxford, UK, 1987).
  5. M. S. Pshenichnikov, K. Duppen, and D. A. Wiersma, “Time-resolved femtosecond photon echo probes bimodal solvent dynamics,” Phys. Rev. Lett. 74, 674–677 (1995).
  6. P. Vöhringer, D. C. Arnett, T.-S. Yang, and N. F. Scherer, “Time-gated photon echo spectroscopy in liquids,” Chem. Phys. Lett. 237, 387–398 (1995).
  7. T. Joo, Y. Jia, and G. R. Fleming, “Ultrafast liquid dynamics studied by third and fifth order three pulse photon echoes,” J. Chem. Phys. 102, 4063–4068 (1995).
  8. P. Vöhringer and N. F. Scherer, “Transient grating optical heterodyne detected impulsive stimulated Raman scattering,” J. Phys. Chem. 99, 2684–2695 (1995).
  9. A. Tokmakoff, M. J. Lang, D. S. Larsen, and G. R. Fleming, “Intrinsic optical heterodyne detection of a two-dimensional fifth order Raman response,” Chem. Phys. Lett. 272, 48–54 (1997).
  10. S. Matsuo and T. Tahara, “Phase stabilized optical heterodyne detection of impulsive stimulated Raman scattering,” Chem. Phys. Lett. 265, 636–642 (1997).
  11. X. J. Chang, P. Cong, and J. D. Simon, “Optical heterodyne detection of impulsive stimulated Raman scattering in liquids,” J. Phys. Chem. 99, 7857–7859 (1995).
  12. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Phase-locked heterodyne-detected stimulated photon echo. A unique tool to study solute-solvent interactions,” Chem. Phys. Lett. 238, 1–8 (1995).
  13. M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
  14. N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, “Fluorescence detected wave packet interferometry: time resolved spectroscopy with sequences of femtosecond phase-locked pulses,” J. Chem. Phys. 95, 1487–1511 (1991).
  15. D. S. Chemla, J.-Y. Bigot, M.-A. Mycek, S. Weiss, and W. Schäfer, “Ultrafast phase dynamics of coherent emission from excitons in GaAs quantum wells,” Phys. Rev. B 50, 8439–8453 (1994).
  16. S. Mukamel, C. Ciordas-Ciurdariu, and V. Khidekel, “Wigner spectrograms for femtosecond pulse-shaped heterodyne and autocorrelation measurements,” IEEE J. Quantum Electron. 32, 1278–1288 (1996).
  17. F. Reynaud, F. Salin, and A. Barthelmy, “Measurement of phase shifts introduced by nonlinear optical phenomena on subpicosecond pulses,” Opt. Lett. 14, 275–277 (1989).
  18. E. Tokunaga, A. Terasaki, and T. Kobayashi, “Femtosecond phase spectroscopy by use of frequency-domain interference,” J. Opt. Soc. Am. B 12, 753–771 (1995).
  19. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
  20. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996).
  21. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses: erratum,” Opt. Lett. 21, 1313 (1996).
  22. M. Kujawinska, “Spatial phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Philadelphia, 1993), pp. 141–193.
  23. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
  24. J. Paye, “How to measure the amplitude and phase of an ultrashort light pulse with an autocorrelator and a spectrometer,” IEEE J. Quantum Electron. 30, 2693–2697 (1994).
  25. K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32, 1253–1264 (1996).
  26. J.-P. Likforman, M. Joffre, and V. Thierry-Mieg, “Measurement of photon echoes by use of femtosecond Fourier-transform spectral interferometry,” Opt. Lett. 22, 1104–1106 (1997).
  27. M. F. Emde, W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Spectral interferometry as an alternative to time domain heterodyning,” Opt. Lett. 22, 1338–1340 (1997).
  28. X. Chen, W. J. Walecki, O. Buccafusca, D. N. Fittinghoff, and A. L. Smirl, “Temporally and spectrally resolved amplitude and phase of coherent four-wave-mixing emission from GaAs quantum wells,” Phys. Rev. B 56, 9738–9743 (1997).
  29. U. Brackmann, Lamdachrome Laser Dyes (Lambda Physik, Gottingen, 1986).
  30. For ω≫0, (1/2)∫e(t)exp[−iΦ(t)]exp(iωt)dt is a rotating-wave approximation to E⁁(ω), while (1/2)∫e(t)exp[iΦ(t)] exp(iωt)dt is a rotating-wave approximation for ω≪0. Near ω=0, the two rotating-wave approximations to E⁁(ω) interfere so that Φ(ω=0)=0, ±π is continuous with Φ(ω)=−Φ(−ω)mod(2π).
  31. L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, “Route to phase control of ultrashort light pulses,” Opt. Lett. 21, 2008–2010 (1996).
  32. N. Bloembergen, Nonlinear Optics (Addison-Wesley, New York, 1992). See the discussion at the beginning of Chap. 4. Within the rotating-wave approximation defined in Note 30, if constant spectral phases Φ1, Φ2, and Φ3 are added to the excitation pulses, the phase of the nonlinear polarization in direction s1k1+s2k2+s3k3 (where si= ±1) is increased by s1Φ1+s2Φ2+s3Φ3. In the direction k3+k2−k1, a constant phase Φ0 added to all three excitation pulses adds the same constant phase Φ0 to the third-order polarization and emitted field. This is canceled in the spectral interferogram because the reference pulse has the same constant phase Φ0.
  33. K. C. Chu, J. P. Heritage, R. S. Grant, K. X. Liu, A. Dienes, W. E. White, and A. Sullivan, “Direct measurement of the phase of femtosecond pulses,” Opt. Lett. 20, 904–906 (1995).
  34. The spectral phases are identical in the sense of a FROG measurement. There are experimental uncertainties in the delay, and there could be nearly constant differences in the spectral phases. Near 800 nm, a path difference of ~30 μm between a fused-silica beam splitter and compensating block would produce both a 45-fs delay and a nearly constant spectral phase difference of π (see Ref. 31). Such constant phase differences might be eliminated by tilting the compensating blocks.
  35. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, New York, 1997).
  36. H. Nakatsuka, N. Tsurmachi, and T. Fuji, “Interferometric observation of femtosecond free induction decay,” Opt. Lett. 19, 1867–1869 (1994).
  37. A. M. Weiner, S. De Silvestri, and E. P. Ippen, “Three-pulse scattering for femtosecond dephasing studies: theory and experiment,” J. Opt. Soc. Am. B 2, 654–661 (1985).
  38. T. Joo, Y. Jia, J.-Y. Yu, M. J. Lang, and G. R. Fleming, “Third order nonlinear time domain probes of solvation dynamics,” J. Chem. Phys. 104, 6089–6108 (1996).
  39. T. Joo, Y. Jia, J.-Y. Yu, D. M. Jonas, and G. R. Fleming, “Dynamics in isolated bacterial light harvesting antenna (LH2) of Rhodobacter sphaeroides at room temperature,” J. Phys. Chem. 100, 2399–2409 (1996).
  40. D. W. Robinson, “Phase unwrapping methods” in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, D. W. Robinson and G. T. Reid, eds. (Institute of Physics, Philadelphia, 1993).
  41. S. Qian and J. M. Morris, “Wigner distribution decomposition and cross-terms deleted representation,” Signal Process. 27, 125–144 (1992).
  42. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  43. W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Ann. Rev. Phys. Chem. 43, 497–523 (1992).
  44. J. L. Hall, H. G. Robinson, T. Baer, and L. Hollberg, “The lineshapes of sub-Doppler resonances observable with FM side-band (optical heterodyne) techniques,” in Advances in Laser Spectroscopy, F. T. Arecchi, F. Strumia, and H. Walther, eds. (Plenum, New York, 1983).
  45. L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21, 564–566 (1996).
  46. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited