OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 9 — Sep. 1, 1998
  • pp: 2383–2389

Photorefractive charge compensation during holographic recording in Bi4Ti3O12

X. Yue, E. Krätzig, and R. A. Rupp  »View Author Affiliations

JOSA B, Vol. 15, Issue 9, pp. 2383-2389 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



During holographic recording in Bi4Ti3O12 a primary charge grating is compensated for by a slow grating. In the dark or by homogeneous illumination afterward, the diffraction efficiency becomes larger than the maximum value measured in the writing mode. The ratio between the efficiencies depends strongly on the writing beam’s intensity and on the grating spacing. Turning on an intense beam additionally in the reading mode temporarily erases the slow compensation grating. Electron–hole or ionic compensation combined with a two-center model for the charge transport is used to account for the observed phenomena.

© 1998 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(190.5330) Nonlinear optics : Photorefractive optics

X. Yue, E. Krätzig, and R. A. Rupp, "Photorefractive charge compensation during holographic recording in Bi4Ti3O12," J. Opt. Soc. Am. B 15, 2383-2389 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 5406 (1971). [CrossRef]
  2. G. Montemezzani and P. Günter, “Thermal hologram fixing in pure and doped KNbO3 crystals,” J. Opt. Soc. Am. B 7, 2323 (1990). [CrossRef]
  3. X. Tong, M. Zhang, and A. Yariv, “Thermal fixing of volume holograms in potassium niobate,” Appl. Phys. Lett. 69, 3966 (1996). [CrossRef]
  4. J. P. Herriau and J. P. Huignard, “Hologram fixing at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140 (1986). [CrossRef]
  5. L. Arizmendi, “Thermal fixing of holographic grating in Bi12SiO20,” J. Appl. Phys. 65, 423 (1988). [CrossRef]
  6. M. Miteva and L. Nikolova, “Oscillation behaviour of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO12 crystals,” Opt. Commun. 67, 192 (1988). [CrossRef]
  7. E. Rickermann, S. Riehemann, K. Buse, D. Dirksen, and G. von Bally, “Diffraction efficiency enhancement of holographic gratings in Bi12Ti0.76V0.24O20 crystals after recording,” J. Opt. Soc. Am. B 13, 2299 (1996). [CrossRef]
  8. X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997). [CrossRef]
  9. D. Kirillov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520 (1991). [CrossRef] [PubMed]
  10. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13, 2352 (1996). [CrossRef]
  11. X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip, “Photorefractive effect in doped Pb5Ge3O11 and in (Pb1−xBax)5Ge3O11,” J. Appl. Phys. 83, 3473 (1998). [CrossRef]
  12. X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996). [CrossRef]
  13. X. Yue, F. Mersch, R. A. Rupp, and E. Krätzig, “Absorption gratings in ferroelectric Bi4Ti3O12,” Appl. Phys. B: Lasers Opt. 65, 505 (1997). [CrossRef]
  14. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171 (1993). [CrossRef]
  15. P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991). [CrossRef]
  16. G. Montemezzani, M. Ingold, H. Looser, and P. Günter, “Multiple photorefractive gratings in Ce-doped LiNb3 and KNbO3 crystal,” Ferroelectrics 92, 281 (1989). [CrossRef]
  17. K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B: Lasers Opt. 64, 273 (1997). [CrossRef]
  18. X. Yue, K. Buse, F. Mersch, R. A. Rupp, and E. Krätzig, “Diffraction efficiency enhancement of photorefractive gratings in Bi4Ti3O12 at low temperatures,” J. Opt. Soc. Am. B 14, 142 (1998). [CrossRef]
  19. M. C. Bashaw, T.-P. Ma, and R. C. Barker, “Comparison of single- and two-species models of electron–hole transport in photorefractive media,” J. Opt. Soc. Am. B 9, 1666 (1992). [CrossRef]
  20. R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351 (1978). [CrossRef]
  21. K. Buse, J. Frejlich, G. Kuper, and E. Krätzig, “Dark build-up of holograms in BaTiO3 after recording,” Appl. Phys. A: Solids Surf. 57, 437 (1993). [CrossRef]
  22. A. L. Smirl, K. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, “Formation, decay, and erasure of photorefractive gratings written in barium titanate by picosecond pulses,” J. Opt. Soc. Am. B 6, 606 (1989). [CrossRef]
  23. P. Tayebati, “Effect of shallow traps on electron–hole competition in semi-insulating photorefractive materials,” J. Opt. Soc. Am. B 9, 415 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited