OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 9 — Sep. 1, 1998
  • pp: 2410–2415

Taming chaos of a laser-diode-pumped multimode Nd:YAG laser by small periodic modulation

Minhee Kang, Kyuman Cho, Chil-Min Kim, Sang-Kun Gil, and Jae-Chul Lee  »View Author Affiliations

JOSA B, Vol. 15, Issue 9, pp. 2410-2415 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We employed additive modulation of a laser-diode current to demonstrate dramatic suppression of chaos in the output of a laser-diode-pumped multimode Nd:YAG laser. Stable periodic orbits were found to depend on the amplitude and the frequency modulation.

© 1998 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3530) Lasers and laser optics : Lasers, neodymium

Minhee Kang, Kyuman Cho, Chil-Min Kim, Sang-Kun Gil, and Jae-Chul Lee, "Taming chaos of a laser-diode-pumped multimode Nd:YAG laser by small periodic modulation," J. Opt. Soc. Am. B 15, 2410-2415 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Wilbrandt and H. Weber, “Fluctuations in mode-locking threshold due to statistics of spontaneous emission,” IEEE J. Quantum Electron. QE-11, 186 (1975); K. Kaufmann and G. Marowsky, Appl. Phys. 11, 47 (1976); C. O. Weiss and H. King, “Oscillation period doubling chaos in a laser,” Opt. Commun. OPCOB8 44, 58 (1982); C. O. Weiss, A. Godone, and A. Olafsson, “Routes to chaotic emission in a cw He–Ne laser,” Phys. Rev. A PLRAAN 28, 892 (1983). [CrossRef]
  2. L. A. Lugiato, G.-L. Oppo, M. A. Pernigo, J. R. Tredicce, L. M. Narducci, and D. K. Bandy, “Spontaneously spatial pattern formation in lasers and cooperative frequency locking,” Opt. Commun. 68, 63 (1988); C. Green, G. B. Mindlin, E. J. D’Angelo, H. G. Solari, and J. R. Tredicce, “Spontaneous symmetry breaking in a laser: the experimental side,” Opt. Commun. 65, 3124 (1990); M. Brambilla, M. Cattaneo, L. A. Lugiato, R. Pirovano, F. Parti, A. J. Kent, G.-L. Oppo, A. B. Coates, C. O. Weiss, G. Green, E. J. D’Angelo, and J. R. Tredicce, “Dynamical transverse laser patterns. I. Theory,” Phys. Rev. A PLRAAN 49, 1427 (1994); A. B. Coates, C. O. Weiss, G. Green, E. J. D’Angelo, J. R. Tredicce, M. Brambilla, M. Cattaneo, L. A. Lugiato, R. Pirovano, F. Prati, A. J. Kent, and G.-L. Oppo, “Dynamical transverse laser patterns. II. Experiments,” Phys. Rev. A PLRAAN 49, 1452 (1994); M. Brambilla, F. Battiped, L. A. Lugiato, V. Penna, F. Parti, C. Tamm, and C. O. Weiss, “Transverse laser patterns. I. Phase singularity crystals,” Phys. Rev. A PLRAAN 43, 5090 (1991). [CrossRef] [PubMed]
  3. D. J. Biaswas and R. G. Harrison, “Experimental evidence of three-mode quasi-periodicity and chaos in a single longitudinal, multi-transverse-mode cw CO2 laser,” Phys. Rev. A 32, 3835 (1985); R. Hauck, F. Hollinger, and H. Weber, “Chaotic and periodic emission of high power solid state lasers,” Opt. Commun. 47, 141 (1983); M.-L. Shih, P. W. Milonni, and J. R. Ackerhalt, “Modeling chaos in the secondary beat frequency,” J. Opt. Soc. Am. B JOBPDE 2, 130 (1985); F. Hollinger, Ch. Jung, and H. Weber, “Quasiperiodicity versus chaos in high power solid state lasers in multi-transversal mode operation,” Opt. Commun. OPCOB8 75, 85 (1990); C. Tamm, “Frequency locking of two transverse optical modes of a laser,” Phys. Rev. A PLRAAN 38, 5960 (1988). [CrossRef] [PubMed]
  4. M. Shih and P. W. Milonni, “Chaotic two-mode lasing,” Opt. Commun. 49, 155 (1984); F. Hollinger and Ch. Jung, “Single-longitudinal-mode laser as a discrete dynamical system,” J. Opt. Soc. Am. B 2, 218 (1985). [CrossRef]
  5. B. S. Poh and T. E. Rozzi, “Intrinsic instabilities in narrow stripe geometry lasers caused by lateral current spreading,” IEEE J. Quantum Electron. QE-17, 723 (1981); N. J. Halas, S. N. Liu, and N. B. Abraham, “Route to mode locking in a three-mode He–Ne 3.39-μm laser including chaos in the secondary beat frequency,” Phys. Rev. A 28, 2915 (1983); G.-L. Oppo, J. R. Tredicce, and L. M. Narducci, “Dynamics of vibro-rotational CO2 laser transitions in a two-dimensional phase space,” Opt. Commun. OPCOB8 69, 393 (1989); J. R. Tredicce, E. J. Quel, A. M. Ghazzawi, C. Green, M. A. Pernigo, L. M. Narducci, and L. A. Lugiato, “Spatial and temporal instabilities in a CO2 laser,” Phys. Rev. Lett. PRLTAO 62, 1274 (1989); W. Klische, C. O. Weiss, and B. Wellegehausen, “Spatiotemporal chaos from a continuous Na2 laser,” Phys. Rev. A PLRAAN 39, 919 (1989). [CrossRef] [PubMed]
  6. E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64, 1196 (1990). [CrossRef] [PubMed]
  7. E. R. Hunt, “Stabilizing high-period orbits in a chaotic system-the diode resonator,” Phys. Rev. Lett. 67, 1953 (1991). [CrossRef] [PubMed]
  8. R. Roy, T. W. Murphy, Jr., T. D. Maier, and Z. Gills, “Dynamical control of a chaotic laser-experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68, 1259 (1992). [CrossRef] [PubMed]
  9. V. Petrov, V. Gáspár, J. Masere, and K. Showalter, “Controlling chaos in the Belousov–Zhabotinsky reaction,” Nature (London) 361, 240 (1993); V. Petrov, S. K. Scott, and K. Showalter, “Mixed-mode oscillations in chemical systems,” J. Chem. Phys. 97, 6191 (1992). [CrossRef]
  10. J. M. Kim, K. S. Kim, C. J. Kim, and C. M. Kim, in 17th Congress of the International Commission for Optics: Optics for Science and New Technology, J. S. Chang, J. H. Lee, S. Y. Lee, and C. H. Nam, eds., Proc. SPIE 2778, 806–807 (1996).
  11. K. Pyragas, “Continuous control of chaos by self-controlling feedback,” Phys. Lett. A 170, 421 (1992). [CrossRef]
  12. R. Lima and M. Pettini, “Suppression of chaos by resonant parametric perturbations,” Phys. Rev. A 41, 726 (1990); Y. Braiman and I. Goldhirsch, “Taming chaotic dynamics with weak periodic perturbations,” Phys. Rev. Lett. 66, 2545 (1991); S. T. Vohra, L. Fabing, and F. Bucholtz, “Suppressed and induced chaos by near resonant perturbation of bifurcations,” Phys. Rev. Lett. PRLTAO 75, 65 (1995); M. Salerno, “Suppression of phase-locked chaos in long Josephson junctions by biharmonic microwave fields,” Phys. Rev. B PRBMDO 44, 2720 (1991); G. Filatrella, G. Rotoli, and M. Salerno, “Suppression of chaos in the perturbed sine–Gordon system by weak periodic signals,” Phys. Lett. A PYLAAG 178, 81 (1993); R. Chacon and J. D. Bejarano, “Routes to suppressing chaos by weak periodic perturbations,” Phys. Rev. Lett. PRLTAO 71, 3103 (1993); R. Chacon, “Inhibition of chaos in Hamiltonian systems by periodic pulses,” Phys. Rev. E PLEEE8 50, 750 (1994); R.-R. Hsu, H.-T. Su, J.-L. Chern, and C.-C. Chen, “Conditions to control chaotic dynamics by weak periodic perturbation,” Phys. Rev. Lett. PRLTAO 78, 2936 (1997). [CrossRef] [PubMed]
  13. A. Azevedo and S. M. Rezende, “Controlling chaos in spin-wave instabilities,” Phys. Rev. Lett. 66, 1342 (1991); W. X. Ding, H. Q. She, W. Huang, and C. X. Yu, “Controlling chaos in a discharge plasma,” Phys. Rev. Lett. 72, 96 (1994); L. Fronzoni, M. Giocondo, and M. Pettini, “Experimental evidence of suppression of chaos by resonant parametric perturbations,” Phys. Rev. A PLRAAN 43, 6483 (1991); H.-J. Li and J.-L. Chern, “Goal-oriented scheme for taming chaos with a weak periodic perturbation experiment in a diode resonator,” Phys. Rev. E PLEEE8 54, 2118 (1996). [CrossRef] [PubMed]
  14. Y. D. Liu and J. R. Rios Leite, “Control of Lorenz chaos,” Phys. Lett. A 185, 35 (1994); R. Vilaseca, A. Kul’minskii, and R. Corbalán, “Tracking unstable steady states by large periodic modulation of control parameter in a nonlinear system,” Phys. Rev. E 54, 82 (1996). [CrossRef]
  15. R. Meucci, W. Gadomski, M. Ciofini, and F. T. Arecchi, “Experimental control of chaos by means of weak parametric perturbations,” Phys. Rev. E 49, R2528 (1994); V. N. Chizhevsky and R. Corbalán, “Experimental observation of perturbation-induced intermittency in the dynamics of a loss-modulated CO2 Laser,” Phys. Rev. E 54, 4576 (1996); M. Ciofini, R. Meucci, and F. T. Arecchi, “Experimental control of chaos in a laser,” Phys. Rev. E PLEEE8 52, 94 (1995). [CrossRef]
  16. N. Watanabe and K. Karaki, “Inducing periodic oscillations from chaotic oscillations of a compound-cavity laser diode with sinusoidally modulated drive,” Opt. Lett. 20, 1032 (1995); “Improvement of interference fringes of a laser diode interferometer by controlling chaos with sinusoidally modulated injection,” Opt. Lett. 21, 1256 (1996). [CrossRef] [PubMed]
  17. P. Colet and Y. Braiman, “Control of chaos in multimode solid state lasers by the use of small periodic perturbations,” Phys. Rev. E 53, 200 (1996). [CrossRef]
  18. W. Koechner, Solid-state Laser Engineering (Springer-Verlag, Berlin, 1995).
  19. H. G. Schuster, Deterministic Chaos (VCH Verlagesellschaft, MbH, Weinheim, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited