OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 9 — Sep. 1, 1998
  • pp: 2446–2454

P-scan analysis of inhomogeneously induced optical nonlinearities

Partha P. Banerjee, Alexander Y. Danileiko, Tracy Hudson, and Deanna McMillen  »View Author Affiliations

JOSA B, Vol. 15, Issue 9, pp. 2446-2454 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model for beam propagation through a nonlinear material is developed; the model takes into account inhomogeneous induced refractive-index changes due to the nonlinearity. A focused Gaussian beam of circular cross section, incident upon the sample, emerges as an elliptic Gaussian beam after interaction in this material. The nonlinearity coefficient values derived from a Z scan of photorefractive lithium niobate crystals compare favorably with that found by varying the power P of a Gaussian beam focused at a fixed longitudinal position within the sample and monitoring the far-field beam ellipticity. The nonlinearity coefficient value is used to determine the dopant’s acceptor-to-donor concentration ratio in photorefractive lithium niobate samples.

© 1998 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics

Partha P. Banerjee, Alexander Y. Danileiko, Tracy Hudson, and Deanna McMillen, "P-scan analysis of inhomogeneously induced optical nonlinearities," J. Opt. Soc. Am. B 15, 2446-2454 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Cronin-Golomb and A. Yariv, “Optical limiter using photorefractive nonlinearities,” J. Appl. Phys. 57, 4906–4910 (1985). [CrossRef]
  2. S. E. Bialkowski, “Application of BaTiO3 beam-fanning optical limiter as an adaptive spatial filter for signal enhancement in pulsed infrared laser-excited photothermal spectroscopy,” Opt. Lett. 14, 1020–1022 (1989). [CrossRef] [PubMed]
  3. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982). [CrossRef] [PubMed]
  4. J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982). [CrossRef]
  5. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photovoltaic effect,” J. Opt. Soc. Am. A 72, 46–51 (1982). [CrossRef]
  6. J. J. Liu, P. P. Banerjee, and Q. W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11, 1688–1693 (1994). [CrossRef]
  7. V. V. Voronov, I. R. Dorosh, Yu. S. Kuz’minov, and N. V. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980). [CrossRef]
  8. M. Segev, Y. Ophir, and B. Fischer, “Nonlinear multi two-wave mixing. The fanning process and its bleaching in photorefractive media,” Opt. Commun. 77, 265–274 (1990). [CrossRef]
  9. G. Zhang, Q. X. Li, P. P. Ho, S. Liu, Z. K. Wu, and R. R. Alfano, “Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955–2959 (1986). [CrossRef]
  10. E. M. Avakyan, K. G. Belabaev, and S. G. Odoulov, “Polarization-anisotropic light-induced scattering in LiNbO3:Fe crystals,” Sov. Phys. Solid State 25, 1887–1890 (1983).
  11. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  12. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989). [CrossRef] [PubMed]
  13. Q. W. Song, C.-P. Zhang, and P. J. Talbot, “Anisotropic light-induced scattering and ‘position dispersion’ in KNbO3:Fe crystal,” Opt. Commun. 98, 269–273 (1993). [CrossRef]
  14. P. P. Banerjee, R. M. Misra, and M. Maghraoui, “Theoretical and experimental studies of propagation of beams through a finite sample of a cubically nonlinear material,” J. Opt. Soc. Am. B 8, 1072–1080 (1991). [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990). [CrossRef]
  16. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974). [CrossRef]
  17. N. Kukhtarev, G. Dovgalenko, G. Duree, G. Salamo, E. Sharp, B. Wechler, and M. Klein, “Single beam polarization holographic grating recording,” Phys. Rev. Lett. 71, 4330–4332 (1993). [CrossRef] [PubMed]
  18. G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637–1645 (1983). [CrossRef]
  19. A. M. Prokhorov and Y. S. Kuzminov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, New York, 1990), Chap. 5, p. 161.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited