OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 111–116

Photorefractive beam coupling between orthogonally polarized light beams by linear dichroism in Cu-doped potassium sodium strontium barium niobate

Yasuo Tomita and Shun-suke Matsushima  »View Author Affiliations


JOSA B, Vol. 16, Issue 1, pp. 111-116 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000111


View Full Text Article

Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-beam coupling between orthogonally polarized waves is demonstrated by use of linear dichroism in Cu-doped potassium sodium strontium barium niobate. A maximum coupling gain coefficient of approximately 4 cm−1 is obtained at a grating spacing of 1 μm and a wavelength of 514.5 nm, where linear dichroism is moderate. The experimental results are compared with a theoretical model that allows a photorefractive grating to have an arbitrary phase shift with respect to an intensity-interference pattern. Fitting results indicate that the grating is not 90°-phase-shifted under open-circuit conditions. The contribution of the bulk photovoltaic field to the photorefractive phase shift is discussed.

© 1999 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing

Citation
Yasuo Tomita and Shun-suke Matsushima, "Photorefractive beam coupling between orthogonally polarized light beams by linear dichroism in Cu-doped potassium sodium strontium barium niobate," J. Opt. Soc. Am. B 16, 111-116 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-1-111


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. R. Neurgaonkar and W. K. Cory, “Progress in photorefractive tungsten bronze crystals,” J. Opt. Soc. Am. B 3, 274–282 (1986).
  2. H. Chen and Y. Xu, “Growth and some properties of undoped and doped (K1−xNax)0.4(Sr1−yBay)0.8Nb2O6, (KNSBN) single crystals with tungsten–bronze structure,” J. Cryst. Growth 96, 357–362 (1989).
  3. Y. Tomita, J. Bergquist, and M. Shibata, “Photorefractive properties of undoped, Cr-doped and Cu-doped potassium sodium strontium barium niobate crystals,” J. Opt. Soc. Am. B 10, 94–99 (1993); Y. Tomita and J. Bergquist, “Photorefractive and thermooptic nonlinearities in potassium sodium strontium barium niobate single crystals,” Optoelectronics 8, 357–377 (1993); Y. Tomita and A. Suzuki, “Broadband photorefractivity of Cr-doped strontium barium niobate in the visible and near-infrared spectral regions,” Opt. Rev. 1, 233–236 (1994).
  4. S. R. Montgomery, Y. Yarrison-Rice, D. O. Pederson, G. J. Salamo, M. J. Miller, W. W. Clark III, G. L. Wood, E. J. Sharp, and R. R. Neurgaonkar, “Self-pumped phase conjugation in the red in photorefractive Ba0.5Sr1.5K0.25Na0.75Nb5O15 and Sr0.6Ba0.4Nb2O6 with cerium in 9-fold coordinated sites,” J. Opt. Soc. Am. B 5, 1775–1782 (1988).
  5. J. Xu, S. Liu, J. Y. Wu, G. Zhang, Y. Song, and H. Chen, “Observation of self-pumped phase-conjugate wave in Cu-KNSBN crystal,” Opt. Commun. 80, 239–241 (1991); J. Xu, Y. Wu, S. Liu, G. Zhang, D. Sun, Y. Song, and H. Chen, “High-performance self-pumped phase conjugator with a multichannel in KNSBN:Cu crystal,” Opt. Lett. 16, 1255–1257 (1991); Q. Jiang, X. Lu, Y. Song, D. Sun, H. Chen, J. Zhang, S. Bian, Y. Yuan, and K. Xu, “Enhanced self-pumped phase conjugation from 16°-cut KNSBN:Cu,” Appl. Opt. APOPAI 31, 6299–6302 (1992).
  6. D. Sun, J. Chen, X. Lu, Y. Song, Z. Shao, H. Chen, J. Xu, Y. Wu, S. Liu, and G. Zhang, “Growth and self-pumped phase conjugation of Ce-doped KNa(Sr0.61Ba0.39)0.4Nb2O6,” J. Appl. Phys. 70, 33–35 (1991); S. Bian, J. Zhang, X. Su, W. Sun, Q. Jiang, H. Chen, and D. Sun, “Self-pumped phase conjugation of 18°-cut Ce-doped KNSBN crystal at 632.8 nm,” Opt. Lett. 18, 769–771 (1993).
  7. S. Bian and J. Frejlich, “Actively stabilized holographic recording for the measurement of photorefractive properties of a Ti-doped KNSBN crystal,” J. Opt. Soc. Am. B 12, 2060–2065 (1995).
  8. H. R. Xia, C. J. Wang, H. C. Chen, and X. L. Lu, “Photorefractive properties of manganese-modified potassium sodium strontium barium niobate crystals,” Phys. Rev. 55, 1292–1294 (1997).
  9. Y. Li, S. Liu, M. Yang, K. Yang, K. Xu, and F. Hou, “Superior real-time holographic storage properties in doped potassium sodium strontium barium niobate crystal,” Opt. Lett. 22, 212–214 (1997).
  10. F. Kahmann, J. Höhne, R. Pankrath, and R. A. Rupp, “Hologram recording with mutually orthogonal polarized waves in Sr0.61Ba0.39Nb2O6:Ce,” Phys. Rev. 50, 2474–2478 (1994).
  11. P. Jullien, P. Mathey, P. Lompré, A. Novikov, and S. Odoulov, “Coupling of ordinary and extraordinary waves in iron-doped BaTiO3 by a grating recorded by spatially oscillating photovoltaic currents,” J. Opt. Soc. Am. B 13, 2615–2621 (1996), and references therein.
  12. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, UK, 1996), Chap. 2.
  13. R. A. Vazquez, F. R. Vachss, R. R. Neurgaonkar, and M. D. Ewbank, “Large photorefractive coupling coefficient in a thin cerium-doped strontium barium niobate crystal,” J. Opt. Soc. Am. B 8, 1932–1941 (1991).
  14. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Mass. 1974), Chap. 9.
  15. S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, Mass., 1994), Chap. 2.
  16. X. Yue, X. Lu, Y. Song, Z. Shao, D. Sun, Q. Jiang, and H. Chen, “Studies of self-pumped phase conjugation in Cu-doped (K0.5Na0.5)0.2(Sr0.61Ba0.39)0.9Nb2O6 crystals,” Appl. Phys. B 53, 319–322 (1991).
  17. Q. Jiang, X. Lu, Y. Song, D. Sun, and H. Chen, “Copper–ion point defects in the photorefractive material (KxNa1−x)0.4(SryBa1−y)0.8Nb2O6,” Phys. Rev. B 50, 4185–4188 (1994).
  18. The magnitude of the space-charge field under open-circuit conditions is approximately 1.2 kV/cm in the absence of Eph, while it is 1.1 kV/cm in the presence of Eph of −2.7 kV/cm. Therefore our estimated values for r13 and r33 without Eph differ only less than 10% from those with Eph of −2.7 kV/cm.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited