OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 117–127

Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators

Gunnar Arisholm  »View Author Affiliations

JOSA B, Vol. 16, Issue 1, pp. 117-127 (1999)

View Full Text Article

Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The signals in an optical parametric oscillator (OPO) build up from quantum noise. In pulsed OPO’s this can lead to fluctuations in such macroscopic signal properties as rise time, pulse energy, frequency spectrum, and transverse profile. The strength of these fluctuations is investigated by use of simulation models that include quantum noise, multiple longitudinal modes, dispersion, birefringence, arbitrary output coupling, and transverse pump profile. The results are compared with results obtained with classical deterministic models to find out how well such models can estimate expectation values of signal observables.

© 1999 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

Gunnar Arisholm, "Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators," J. Opt. Soc. Am. B 16, 117-127 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. J. Werner, M. G. Raymer, M. Beck, and P. D. Drummond, “Ultrashort pulsed squeezing by optical parametric amplification,” Phys. Rev. A 52, 4202–4213 (1995).
  2. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
  3. T. Debuisschert, J. Raffy, J. P. Pocholle, and M. Papuchon, “Intracavity optical parametric oscillator: study of the dynamics in pulsed regime,” J. Opt. Soc. Am. B 13, 1569–1587 (1996).
  4. J. A. C. Terry, Y. Cui, Y. Yang, W. Sibbett, and M. H. Dunn, “Low-threshold operation of an all-solid-state KTP optical parametric oscillator,” J. Opt. Soc. Am. B 11, 758–769 (1994).
  5. R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
  6. B. R. Mollow, “Photon correlations in the parametric frequency splitting of light,” Phys. Rev. A 8, 2684–2694 (1973).
  7. A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2260 (1995).
  8. T. Schröder, K. J. Boller, and R. Wallenstein, “Spectral properties and numerical modelling of a critically phase-matched nanosecond LiB3O5 optical parametric oscillator,” Appl. Phys. B 58, 425–438 (1994).
  9. A. Fix and R. Wallenstein, “Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis,” J. Opt. Soc. Am. B 13, 2484–2497 (1996).
  10. D. J. Armstrong and A. V. Smith, “Tendency of nanosecond optical parametric oscillators to produce purely phase-modulated light,” Opt. Lett. 21, 1634–1636 (1996).
  11. G. W. Baxter, J. G. Haub, and B. J. Orr, “Backconversion in a pulsed optical parametric oscillator: evidence from injection-seeded sidebands,” J. Opt. Soc. Am. B 14, 2723–2730 (1997).
  12. R. Graham and H. Haken, “The quantum-fluctuations of the optical parametric oscillator. I.,” Z. Phys. 210, 276–302 (1968).
  13. R. Graham, “Photon statistics of the optical parametric oscillator including the threshold region,” Z. Phys. 211, 469–482 (1968).
  14. A. S. Lane, M. D. Reid, and D. F. Walls, “Quantum analysis of intensity fluctuations in the nondegenerate parametric oscillator,” Phys. Rev. A 38, 788–799 (1988).
  15. S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71, 209–214 (1989).
  16. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
  17. B. S. Abbott and S. Prasad, “Quantum noise and squeezing in an optical parametric oscillator with arbitrary output-mirror coupling,” Phys. Rev. A 45, 5039–5051 (1992).
  18. L. A. Lugiato, A. Gatti, H. Ritsch, I. Marzoli, and G. L. Oppo, “Quantum images in nonlinear optics,” J. Mod. Opt. 44, 1899–1915 (1997).
  19. I. A. Walmsley and M. G. Raymer, “Experimental study of the macroscopic quantum fluctuations of partially coherent Raman scattering,” Phys. Rev. A 33, 382–390 (1986).
  20. S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Beam-pointing fluctuations in a gain-guided Raman amplifier,” Phys. Rev. A 45, 2031–2043 (1992).
  21. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 9.
  22. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995), Chap. 2.
  23. D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Design criteria and comparison of femtosecond optical parametric oscillators based on KTiOPO4 and RbTiOAsO4,” J. Opt. Soc. Am. B 12, 2168–2179 (1995).
  24. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Heidelberg, 1991), Chap. 2.8.
  25. G. Arisholm, “General numerical methods for simulating second order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14, 2543–2549 (1997).
  26. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), Chap. 15.7.
  27. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 12.12.
  28. P. W. Milonni, The Quantum Vacuum (Academic, San Diego, Calif., 1994), Chap. 4.
  29. R. Lang, M. O. Scully, and W. E. Lamb, “Why is the laser line so narrow? A theory of single-quasimode laser operation,” Phys. Rev. A 7, 1788–1797 (1973).
  30. Ref. 28, Chap. 8.12.
  31. R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited