OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 18–23

Interaction of Bragg solitons in fiber gratings

N. M. Litchinitser, B. J. Eggleton, C. M. de Sterke, A. B. Aceves, and Govind P. Agrawal  »View Author Affiliations


JOSA B, Vol. 16, Issue 1, pp. 18-23 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000018


View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate numerically the interaction between two copropagating Bragg solitons in a fiber grating. We find that, in the low-intensity limit, the interaction is reminiscent of the nonlinear Schrödinger solitons in that Bragg solitons attract or repel each other, depending on their relative phases. However, the relative phase between two Bragg solitons is found to depend on their initial separation. We discuss the implications of the numerical results for laboratory experiments.

© 1999 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2310) Fiber optics and optical communications : Fiber optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(350.2770) Other areas of optics : Gratings

Citation
N. M. Litchinitser, B. J. Eggleton, C. M. de Sterke, A. B. Aceves, and Govind P. Agrawal, "Interaction of Bragg solitons in fiber gratings," J. Opt. Soc. Am. B 16, 18-23 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-1-18


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596–598 (1983). [CrossRef] [PubMed]
  2. F. M. Mitschke and L. F. Mollenauer, “Experimental observation of interaction forces between solitons in optical fibers,” Opt. Lett. 12, 407–409 (1987). [CrossRef] [PubMed]
  3. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16, 15–17 (1991). [CrossRef] [PubMed]
  4. M. Shalaby, F. Reynaud, and A. Barthelemy, “Experimental observation of spatial soliton interactions with a π/2 relative phase difference,” Opt. Lett. 17, 778–780 (1992). [CrossRef] [PubMed]
  5. W. Chen and D. L. Mills, “Gap solitons and nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987). [CrossRef] [PubMed]
  6. J. E. Sipe and H. G. Winful, “Nonlinear Schrödinger solitons in a periodic structure,” Opt. Lett. 13, 132–133 (1988). [CrossRef]
  7. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989). [CrossRef] [PubMed]
  8. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989). [CrossRef]
  9. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1994), Vol. 33, pp. 203–260.
  10. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  11. C. M. de Sterke, B. J. Eggleton, and P. A. Krug, “High-intensity pulse propagation in uniform gratings and grating superstructures,” J. Lightwave Technol. 15, 1494–1502 (1997). [CrossRef]
  12. B. J. Eggleton, R. E. Slusher, T. A. Strasser, and C. M. de Sterke, “High intensity pulse propagation in fiber Bragg gratings,” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), paper BMB1–1.
  13. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef]
  14. B. J. Eggleton, C. M. de Sterke, R. E. Slusher, A. Aceves, J. E. Sipe, and T. A. Strasser, “Modulational instabilities and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998). [CrossRef]
  15. D. Taverner, N. G. R. Broderick, D. T. Richardson, R. I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330 (1998). [CrossRef]
  16. C. M. de Sterke and B. J. Eggleton, “Bragg solitons and the nonlinear Schrödinger equation,” Phys. Rev. E (to be published).
  17. T. Iizuka and M. Wadati, “Grating solitons in optical fibers,” J. Phys. Soc. Jpn. 66, 2308–2313 (1997). [CrossRef]
  18. B. J. Eggleton, R. E. Slusher, N. M. Litchinitser, G. P. Agrawal, and C. M. de Sterke, “Experimental observation of interaction of Bragg solitons,” in International Quantum Electronics Conference (IQEC), Vol. 7 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper QTuJ5.
  19. H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985). [CrossRef]
  20. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991). [CrossRef]
  21. C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, and M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. 2, 253–268 (1996).
  22. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).
  23. C. Desem and P. L. Chu, IEE Proc.-J: Optoelectron. 134, 145–151 (1987). [CrossRef]
  24. P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991). [CrossRef]
  25. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criterion for nearly ideal pulse compression,” J. Lightwave Technol. 15, 1303–1313 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited