OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 31–37

Optical magnetic-resonance imaging of laser-polarized Cs atoms

Kiyoshi Ishikawa, Yoshihiro Anraku, Yoshiro Takahashi, and Tsutomu Yabuzaki  »View Author Affiliations


JOSA B, Vol. 16, Issue 1, pp. 31-37 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000031


View Full Text Article

Acrobat PDF (972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical magnetic-resonance imaging (MRI) is performed to observe a density distribution of the laser-polarized Cs atoms that diffuse in helium buffer gas at roughly room temperature. Spatial resolution of optical MRI and sensitivity of optical detection are discussed for gaseous atoms in a weak magnetic field. We propose a fast method of three-dimensional optical MRI with parallel processing of signals from a photodetector array, and we discuss its application to the spin-polarized noble gas.

© 1999 Optical Society of America

OCIS Codes
(100.6950) Image processing : Tomographic image processing
(110.0180) Imaging systems : Microscopy
(110.6960) Imaging systems : Tomography

Citation
Kiyoshi Ishikawa, Yoshihiro Anraku, Yoshiro Takahashi, and Tsutomu Yabuzaki, "Optical magnetic-resonance imaging of laser-polarized Cs atoms," J. Opt. Soc. Am. B 16, 31-37 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-1-31


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. T. Callaghan, C. D. Eccles, and J. D. Seymour, “An earth’s field nuclear magnetic resonance apparatus suitable for pulsed gradient spin echo measurements of self-diffusion under Antarctic conditions,” Rev. Sci. Instrum. 68, 4263 (1997).
  2. M. P. Augustine, A. Wong-Foy, J. L. Yarger, M. Tomaselli, A. Pines, D. M. TonThat, and J. Clarke, “Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device,” Appl. Phys. Lett. 72, 1908 (1998).
  3. Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175 (1998).
  4. T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629 (1997).
  5. A. C. Tam and W. Happer, “Optically pumped cell for novel visible decay of inhomogeneous magnetic field or of rf frequency spectrum,” Appl. Phys. Lett. 30, 580 (1977).
  6. J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69 (1997).
  7. J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209 (1997).
  8. A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081 (1997).
  9. B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer, “High-volume production of laser-polarized 129Xe,” Appl. Phys. Lett. 69, 1668 (1996).
  10. S. I. Kanorsky, S. Lang, S. Lücke, S. B. Ross, T. W. Hänsch, and A. Weis, “Millihertz magnetic resonance spectroscopy of Cs atoms in body-centered-cubic 4He,” Phys. Rev. A 54, R1010 (1996).
  11. T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu, “Spin-exchange-pumped 3He and 129Xe Zeeman masers,” Phys. Rev. Lett. 72, 2363 (1994).
  12. P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon, Oxford, 1991).
  13. R. Kimmich, NMR Tomography, Diffusiometry, Relaxometry (Springer-Verlag, Berlin, 1997).
  14. C. N. Chen and D. I. Hoult, Biomedical Magnetic Resonance Technology (Hilger, New York, 1989).
  15. M. Tanigawa, Y. Fukuda, T. Kohmoto, K. Sakuno, and T. Hashi, “Sublevel echoes selectively excited by light-pulse trains: synchronized-quantum-beat echoes,” Opt. Lett. 8, 620 (1983).
  16. J. Skalla, G. Wäckerle, and M. Mehring, “Coherence transfer between atomic transitions of different g-factor by modulated optical excitation,” Opt. Commun. 127, 31 (1996).
  17. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Academic, New York, 1963).
  18. In the case of observing spin echo, the transverse pumping with periodic light pulses is found to be much better for producing sublevel coherence of ground-state Cs atoms. All the pumped Cs atoms precess along z axis and have no z component of spin. Therefore FID does not appear by the π pulse.
  19. P. Violino, “A review of the optical methods for the study of the spin relaxation of an alkali metal by collision with a buffer gas,” Nuovo Cimento Suppl. 6, 440 (1968).
  20. K. D. Kihm, H. S. Ko, and D. P. Lyons, “Tomographic identification of gas bubbles in two-phase flows with the combined use of the algebraic reconstruction technique and the genetic algorithm,” Opt. Lett. 23, 658 (1998).
  21. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31 (1977).
  22. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169 (1972).
  23. The measure of distortion Md is less than the resolution power Mr, which introduces slight distortion of an image, as discussed in theory.
  24. C. H. Neuman, “Spin echo of spins diffusing in a bounded medium,” J. Chem. Phys. 60, 4508 (1974).
  25. P. T. Callaghan, A. Coy, L. C. Forde, and C. J. Rofe, “Diffusive relaxation and edge enhancement in NMR microscopy,” J. Magn. Reson., Ser. A 101, 347 (1993).
  26. S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, and M. Ducloy, “Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain,” Phys. Rev. A 57, R3169 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited