OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 96–102

Nonlinear dynamics of circular-grating distributed-feedback semiconductor devices

K. J. Kasunic and E. M. Wright  »View Author Affiliations


JOSA B, Vol. 16, Issue 1, pp. 96-102 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000096


View Full Text Article

Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report numerical results for the spatiotemporal dynamics of circular-grating distributed-feedback devices with an intensity-dependent refractive index. For the specific geometry and range of variables considered, we find that modulational instabilities do not propagate in these structures. This is due to the 1/r intensity distribution associated with cylindrical waves, which reduces the effectiveness of the self- and cross-phase-modulation nonlinearities.

© 1999 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect

Citation
K. J. Kasunic and E. M. Wright, "Nonlinear dynamics of circular-grating distributed-feedback semiconductor devices," J. Opt. Soc. Am. B 16, 96-102 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-1-96


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Winful, J. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
  2. H. Winful and G. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).
  3. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
  4. H. Winful, R. Zamir, and S. Feldman, “Modulational instability in nonlinear periodic structures: implications for gap solitons,” Appl. Phys. Lett. 58, 1001–1003 (1991).
  5. T. Erdogan and D. G. Hall, “Circularly-symmetric distributed-feedback semiconductor laser: an analysis,” J. Appl. Phys. 68, 1435–1444 (1990).
  6. T. Erdogan and D. G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. 28, 612–623 (1992).
  7. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921–1923 (1992).
  8. C. Wu, T. Makino, S. Najafi, R. Maciejko, M. Svilans, J. Glinski, and M. Fallahi, “Threshold gain and threshold current analysis of circular grating DFB and DBR lasers,” IEEE J. Quantum Electron. 29, 2596–2606 (1993).
  9. S. Radic, N. George, and G. P. Agrawal, “Theory of low-threshold optical switching in nonlinear phase-shifted periodic structures,” J. Opt. Soc. Am. B 12, 671–680 (1995).
  10. A. E. Siegman, Lasers (University Science, Mill Valley, Calif. 1986), p. 647.
  11. C. M. de Sterke and J. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).
  12. D. G. Hall, “Coupled-amplitude equations via a Green’s-function technique,” Am. J. Phys. 61, 44–49 (1993).
  13. N. W. Carlson, Monolithic Diode-Laser Arrays (Springer-Verlag, New York, 1997), Chap. 2.
  14. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), Section 10.6.
  15. C. M. de Sterke, K. Jackson, and B. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–412 (1991).
  16. K. J. Kasunic and M. Fallahi, “Gain saturation in circular-grating distributed-feedback semiconductor lasers,” J. Opt. Soc. Am. B 14, 2147–2152 (1997).
  17. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1962), Appendix D.
  18. C. H. Henry, “Performance of distributed feedback lasers designed to favor the energy gap mode,” IEEE J. Quantum Electron. QE-21, 1913–1918 (1985).
  19. P. K. Milsom, A. Miller, and D. Herbert, “The effect of end reflections and mirror positioning on the optical response of a nonlinear DFB device,” Opt. Commun. 69, 319–324 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited