OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 1680–1685

Analysis of self-written waveguide experiments

Tanya M. Monro, C. Martijn de Sterke, and L. Poladian  »View Author Affiliations

JOSA B, Vol. 16, Issue 10, pp. 1680-1685 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three aspects of the experimental observation of self-written waveguides are analyzed. The evolution of the self-written waveguide is compared quantitatively with a model that incorporates saturation and an exposure-dependent attenuation, giving excellent agreement. The spatial features of the self-written channel that are observable by luminescence are qualitatively explained by the same model. Even though the channel is multimoded at the blue writing wavelength, it is demonstrated to be single moded at the wavelength λ=1550 nm, consistent with predictions.

© 1999 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.5940) Nonlinear optics : Self-action effects

Tanya M. Monro, C. Martijn de Sterke, and L. Poladian, "Analysis of self-written waveguide experiments," J. Opt. Soc. Am. B 16, 1680-1685 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1998). [CrossRef]
  2. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994). [CrossRef]
  3. M. V. Bazylenko, M. Gross, A. Simonian, and P. L. Chu, “Pure and fluorine doped silica films deposited in a hollow cathode reactor for integrated optics applications,” J. Vac. Sci. Technol. 14, 336–345 (1996). [CrossRef]
  4. C. Meneghini and A. Villeneuve, “Self-writing channel waveguides in As2S3 thin films by two-photon absorption,” in Nonlinear Guided Waves & Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 32–34.
  5. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993). [CrossRef] [PubMed]
  6. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996). [CrossRef] [PubMed]
  7. W. Torruellas, Z. Wang, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995). [CrossRef] [PubMed]
  8. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16, 15–17 (1991). [CrossRef] [PubMed]
  9. M. Segev, B. Crosignani, and A. Yariv, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992). [CrossRef] [PubMed]
  10. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76, 2698–2701 (1996). [CrossRef] [PubMed]
  11. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978). [CrossRef]
  12. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989). [CrossRef] [PubMed]
  13. C. V. Poulsen, J. Hubner, T. Rasmussen, L. Anderson, and M. Kristensen, “Characterisation of dispersion properties in planar wave guides using UV-induced Bragg gratings,” Electron. Lett. 31, 1437–1438 (1995). [CrossRef]
  14. V. Mizrahi, P. J. Lemaire, T. Erdogan, W. A. Reed, D. J. DiGiovanni, and R. M. Atkins, “Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993). [CrossRef]
  15. D. K. W. Lam and B. K. Garside, “Characterization of single-mode optical fiber filters,” Appl. Opt. 20, 440–445 (1981). [CrossRef] [PubMed]
  16. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  17. C. M. de Sterke and J. E. Sipe, “Ideal mode expansion for planar optical waveguides,” J. Opt. Soc. Am. A 7, 636–645 (1990). [CrossRef]
  18. T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germano-silicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996). [CrossRef]
  19. T. M. Monro, L. Poladian, and C. M. de Sterke, “Numerically efficient modal decomposition approach to self-writing processes,” J. Opt. Soc. Am. A 14, 2180–2189 (1997). [CrossRef]
  20. T. M. Monro, P. D. Miller, L. Poladian, and C. M. de Sterke, “Self-similar evolution of self-written waveguides,” Opt. Lett. 23, 268–270 (1998). [CrossRef]
  21. T. M. Monro, L. Poladian, and C. M. de Sterke, “Analysis of self-written waveguides in photopolymers and photosensitive materials,” Phys. Rev. E 57, 1103–1113 (1998). [CrossRef]
  22. L. J. Poyntz-Wright and P. St. J. Russell, “Spontaneous relaxation processes in irradiated germanosilicate optical fibres,” Electron. Lett. 25, 478–480 (1989). [CrossRef]
  23. E. M. Dianov, V. M. Mashinsky, V. B. Neustruev, O. D. Sazhin, V. V. Brazhkin, and V. A. Sidorov, “Optical absorption and luminescence of germanium oxygen-deficient centers in densified germanosilicate glass,” Opt. Lett. 22, 1089–1091 (1997). [CrossRef] [PubMed]
  24. M. V. Bazylenko and D. Moss, “Two types of photosensitivity observed in hollow cathode PECVD germanosilicate planar waveguides,” Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Vol. 15 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 184–186.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited