Architecture for high-conversion-efficiency optical parametric oscillators
JOSA B, Vol. 16, Issue 10, pp. 1712-1718 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001712
Acrobat PDF (172 KB)
Abstract
We report on the theoretical analysis of an optical parametric oscillator in which a succession of parametric amplifications takes place to achieve more than 200% quantum efficiency at the wavelength of interest. The first interaction generates the desired radiation, which we call the signal, whatever its wavelength, and its complement, which we called the idler. When the idler is of no particular interest it is used as the pump in a second interaction to amplify the same signal, increasing the quantum efficiency for this radiation. The same type of process can be applied again until the maximum efficiency is reached.
© 1999 Optical Society of America
OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
Citation
L. Becouarn, E. Lallier, D. Delacourt, and M. Papuchon, "Architecture for high-conversion-efficiency optical parametric oscillators," J. Opt. Soc. Am. B 16, 1712-1718 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-10-1712
Sort: Year | Journal | Reset
References
- P. Kupecek, H. Le Person, and M. Comte, “A multipurpose efficient tunable infrared coherent source with tuning range from 0.8 to 25 μm and peak powers in the range 50–200 kW,” Infrared Phys. 19, 263–271 (1979).
- K. Koch, G. T. Moore, and E. C. Cheung, “Optical parametric oscillation with intracavity difference-frequency mixing,” J. Opt. Soc. Am. B, 2268–2273 (1995).
- K. Koch, G. T. Moore, and E. C. Cheung, “Greater than 100% photon conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), paper PD3.
- J. M. Fukumoto, H. Komine, W. H. Long, Jr., and E. A. Stappaerts, “Periodically poled LiNbO3 optical parametric oscillator with intracavity difference-frequency mixing,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), paper PD4.
- J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
- R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432–444 (1979).
- P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed. (Springer, New York, 1971).
- R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).
- S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
- W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
- See, for example, L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997).
- D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, n_{e}, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
- C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique Quantique (Hermann, Paris, 1973), Vol. I.
- E. Lallier, L. Becouarn, M. Brévignon, and J. Lehoux, “Infrared difference frequency generation with quasi-phase-matched GaAs,” Electron. Lett. 34, 1609–1610 (1998).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.