OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 1725–1729

Dynamic bulk photovoltaic effect in photorefractive barium calcium titanate

N. Korneev, D. Mayorga, H. Veenhuis, K. Buse, and E. Krätzig  »View Author Affiliations


JOSA B, Vol. 16, Issue 10, pp. 1725-1729 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001725


View Full Text Article

Enhanced HTML    Acrobat PDF (126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Oscillating photocurrents are generated in a photorefractive iron-doped barium calcium titanate crystal (Ba0.77Ca0.23TiO3; BCT) by illumination with an oscillating interference pattern. Non-steady-state photocurrents arise usually from the interaction of a space-charge field with an oscillating photoconductivity pattern. However, a second-harmonic signal of the oscillating photocurrents is observed in BCT, which is present without any space-charge field. The main features of the new effect can be explained by consideration of a dynamic, i.e., time-dependent, bulk photovoltaic effect. The effect might be useful for optically addressed memories or optical correlators.

© 1999 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(100.4550) Image processing : Correlators
(160.2900) Materials : Optical storage materials
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics

Citation
N. Korneev, D. Mayorga, H. Veenhuis, K. Buse, and E. Krätzig, "Dynamic bulk photovoltaic effect in photorefractive barium calcium titanate," J. Opt. Soc. Am. B 16, 1725-1729 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-10-1725


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3 crystals,” Appl. Phys. A 65, 301–305 (1997). [CrossRef]
  2. P. Günter and J.-P. Huignard, eds., Topics in Applied Physics: Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989).
  3. G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).
  4. I. A. Sokolov and S. I. Stepanov, “Non-steady state photovoltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275–1277 (1990). [CrossRef]
  5. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990). [CrossRef]
  6. G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).
  7. S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).
  8. S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993). [CrossRef]
  9. S. Sochava, K. Buse, and E. Krätzig, “Characterization of photorefractive KNbO3:Fe by non-steady-state photocurrent techniques,” Opt. Commun. 105, 315–319 (1994). [CrossRef]
  10. N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998). [CrossRef]
  11. N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady-state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999). [CrossRef]
  12. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974). [CrossRef]
  13. N. Kristoffel, R. von Baltz, and D. Hornung, “On the intrinsic bulk photovoltaic effect: performing the sum over intermediate states,” Z. Phys. B 47, 293–296 (1982). [CrossRef]
  14. H. Presting and R. von Baltz, “Bulk photovoltaic effect in a ferroelectric crystal,” Phys. Status Solidi B 112, 559–564 (1982). [CrossRef]
  15. W. Ruppel, R. von Baltz, and P. Würfel, “The origin of the photo-EMF in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109–123 (1982). [CrossRef]
  16. R. S. Cudney, R. M. Pierce, G. D. Bacher, D. Mahgerefteh, and J. Feinberg, “Intensity dependence of the photogalvanic effect in barium titanate,” J. Opt. Soc. Am. B 9, 1704–1713 (1992). [CrossRef]
  17. K. Buse, “Light-induced charge transport processes in photorefractive crystals: I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997). [CrossRef]
  18. N. Noginova, N. Kukhtarev, M. A. Noginov, B. S. Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic-current study in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622–2629 (1996). [CrossRef]
  19. H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. (to be published).
  20. K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993). [CrossRef]
  21. Ch. Kuper, “Züchtung und Charakterisierung von (Ba1−xCax)TiO3-Kristallen, Ph.D. dissertation (Universität Osnabrück, Osnabrück, Germany, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited