OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 1730–1736

Optical Wigner functions for two-photon entangled wave packets

Yacob Ben-Aryeh, Yanhua H. Shih, and Morton H. Rubin  »View Author Affiliations


JOSA B, Vol. 16, Issue 10, pp. 1730-1736 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001730


View Full Text Article

Acrobat PDF (132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Einstein–Podolsky–Rosen (EPR) correlations produced for two-photon entangled wave packets are analyzed by use of optical Wigner functions. In particular, type-II optical parametric downconversion systems are used, and the effects of the length of the crystal and the filter bandwidth on the Wigner functions are studied. The relation between the optical Wigner functions and the interference experiment with a beam splitter is studied. We find that, whereas in first-order correlation experiments (typified, for example, by Young’s interference experiment) the “photon interferes with itself” [P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, UK, 1958), p. 9], in the EPR correlations the two-photon amplitude function interferes with itself. Such interference is analyzed by use of the optical Wigner functions.

© 1999 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(260.3160) Physical optics : Interference

Citation
Yacob Ben-Aryeh, Yanhua H. Shih, and Morton H. Rubin, "Optical Wigner functions for two-photon entangled wave packets," J. Opt. Soc. Am. B 16, 1730-1736 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-10-1730


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932).
  2. M. Hillery, R. F. O’Connel, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep. 106, 121–167 (1984).
  3. K. E. Cahill and R. J. Glauber, “Ordered expansions in boson amplitude operators,” Phys. Rev. 177, 1857–1881 (1969); K. E. Cahil and R. J. Glauber, “Density operators and quasiprobability distributions,” Phys. Rev. 177, 1882–1902 (1969).
  4. Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics (World Scientific, Singapore, 1991).
  5. B. R. Mollow and R. J. Glauber, “Quantum theory of parametic amplification. II,” Phys. Rev. 160, 1097–1108 (1967).
  6. U. Leonhardt, “Quantum statistics of a two-mode SU(1, 1) interferometer,” Phys. Rev. A 49, 1231–1242 (1994).
  7. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge U. Press, Cambridge, 1988), pp. 196–200.
  8. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein–Podolski–Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992); Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Realization of Einstein–Podolski–Rosen paradox for continuous variables in nondegenerate parametric amplification,” Appl. Phys. B 55, 265–278 (1992).
  9. U. Leonhardt, “On Bell correlations for the phase space of two entangled light modes,” Phys. Lett. A 182, 195–200 (1993).
  10. A. Gilchrist, P. Deuar, and M. D. Reid, “Contradiction of quantum mechanics with local hidden variables for quadrature phase amplitude measurements,” Phys. Rev. Lett. 80, 3169–3172 (1998).
  11. K. Banaszek and K. Wodkiewicz, “Testing quantum nonlocality in phase space,” Phys. Rev. Lett. 82, 2009–2013 (1999).
  12. A. Casado, A. Fernandez-Rueda, T. Marshal, R. Risco-Delgado, and E. Santos, “Fourth-order interference in the Wigner representation for parametric down-conversion experiments,” Phys. Rev. A 55, 3879–3890 (1997).
  13. D. Dragoman, “The Wigner distribution function in optics and optoelectronics,” Prog. Opt. 37, 1–56 (1997).
  14. L. Cohen, Time-Frequency Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  15. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).
  16. Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down conversion,” Phys. Rev. A 50, 23–28 (1994).
  17. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down conversion,” Phys. Rev. A 50, 5122–5133 (1994).
  18. B. E. A. Saleh, A. Joobeur, and M. C. Teich, “Spatial effects in two- and four-beam interference of partially entangled biphotons,” Phys. Rev. A 57, 3991–4003 (1998).
  19. J. Perina, Jr., A. V. Sergienko, B. M. Jost, B. E. A. Saleh, and M. C. Teich, “Dispersion in femtosecond entangled two-photon interference,” Phys. Rev. A 59, 2359–2368 (1999).
  20. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
  21. M. H. Rubin, “Transverse correlation in optical spontaneous parametric down conversion,” Phys. Rev. A 54, 5349–5360 (1996).
  22. Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988).
  23. H. M. Wiseman, F. E. Harrison, M. J. Collet, D. F. Walls, S. M. Tan, and R. B. Killip, “Nonlocal Momentum Transfer in ‘Welcher Weg’ Schemes” in Quantum Interferometry, Proceedings of an Adriatico Conference at the International Center for Theoretical Physics, Trieste, 1996, F. De Martini, G. Denardo, and Y. H. Shih, eds. (VCH, Weinheim, 1996), pp. 267–278.
  24. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, UK, 1958), p. 9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited