OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 1737–1742

Stable discrete domain walls and quasi-rectangular solitons in quadratically nonlinear waveguide arrays

A. Kobyakov, S. Darmanyan, T. Pertsch, and F. Lederer  »View Author Affiliations

JOSA B, Vol. 16, Issue 10, pp. 1737-1742 (1999)

View Full Text Article

Acrobat PDF (318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We predict the existence of optical domain walls and quasi-rectangular localized modes in waveguide arrays with quadratic nonlinearity. An analytical criterion for the stability of these localized modes is derived and confirmed by direct numerical calculations. The instability gain near the respective boundaries is calculated. The instability predicted is controllable by input power and therefore has a potential for use in new all-optical switching schemes. Parameters of the waveguide arrays made from titanium-indiffused lithium niobate as well as the required power levels are estimated.

© 1999 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

A. Kobyakov, S. Darmanyan, T. Pertsch, and F. Lederer, "Stable discrete domain walls and quasi-rectangular solitons in quadratically nonlinear waveguide arrays," J. Opt. Soc. Am. B 16, 1737-1742 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
  2. C. Schmidt-Hattenberger, U. Trutschel, and F. Lederer, “Nonlinear switching in multiple-core couplers,” Opt. Lett. 16, 294–296 (1991).
  3. D. N. Cristodoulides and R. I. Joseph, “Discrete self-focusing in nonlinear arrays of coupled waveguides,” Opt. Lett. 13, 794–796 (1988).
  4. A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996).
  5. O. Bang and P. D. Miller, “Exploiting discreteness for switching in waveguide arrays,” Opt. Lett. 21, 1105–1107 (1996).
  6. W. Krolikowski and Y. S. Kivshar, “Soliton-based optical switching in waveguide arrays,” J. Opt. Soc. Am. B 13, 876–887 (1996).
  7. T. Peschel, R. Muschall, and F. Lederer, “Power-controlled beam steering in nonequidistant arrays of nonlinear waveguides,” Opt. Commun. 136, 16–21 (1997).
  8. P. Millar, J. S. Aitchison, J. U. Kang, G. I. Stegeman, A. Villeneuve, G. T. Kennedy, and W. Sibbett, “Nonlinear waveguide arrays in AlGaAs,” J. Opt. Soc. Am. B 14, 3224–3231 (1997).
  9. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998).
  10. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
  11. R. Regener and W. Sohler, “Efficient second-harmonic generation in Ti:LiNbO3 channel waveguide resonators,” J. Opt. Soc. Am. B 5, 267–277 (1988).
  12. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett. 46, 940–942 (1996).
  13. S. Darmanyan, A. Kobyakov, and F. Lederer, “Strongly localized modes in discrete systems with quadratic nonlinearity,” Phys. Rev. E 57, 2344–2349 (1998).
  14. T. Peschel, U. Peschel, and F. Lederer, “Discrete bright solitary waves in quadratically nonlinear media,” Phys. Rev. E 57, 1127–1133 (1998).
  15. P. D. Miller and O. Bang, “Macroscopic dynamics in quadratic nonlinear lattices,” Phys. Rev. E 57, 6038–6049 (1998).
  16. S. Darmanyan, A. Kobyakov, E. Schmidt, and F. Lederer, “Strongly localized vectorial modes in nonlinear waveguide arrays,” Phys. Rev. E 57, 3520–3530 (1998).
  17. J. B. Page, “Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems,” Phys. Rev. B 41, 7835–7838 (1990).
  18. S. Darmanyan, A. Kobyakov, F. Lederer, and L. Vázquez, “Discrete fronts and quasirectangular solitons,” Phys. Rev. B 59, 5994–5997 (1999).
  19. R. Schiek, Y. Baek, and G. I. Stegeman, “Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B 15, 2255–2268 (1998).
  20. E. Strake, G. P. Bava, and I. Montrosset, “Modes of channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method,” J. Lightwave Technol. 6, 1126–1135 (1988).
  21. G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modeling of integrated optical parametric oscillators,” IEEE J. Quantum Electron. QE-23, 42–52 (1987).
  22. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991), pp. 74–76.
  23. M. M. Fejer, “Nonlinear optical frequency conversion: material requirements, engineered materials, and quasi-phasematching,” in Beam Shaping and Control with Nonlinear Optics (Plenum, New York, 1998), pp. 375–406.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited