OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 1814–1823

Ultrafast optical properties of gold nanoshells

Richard D. Averitt, Sarah L. Westcott, and Naomi J. Halas  »View Author Affiliations


JOSA B, Vol. 16, Issue 10, pp. 1814-1823 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001814


View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the results of ultrafast pump–probe measurements on films of gold-coated gold sulfide nanoshells. The measured change in transmission (ΔT/T) agrees with theoretical calculations that relate the increase in the electron temperature to changes in the Drude and interband components of the gold shell dielectric function. The major contribution physically corresponds to modified screening of the d-band electrons by the conduction electrons in the gold shell. The electrons cool with a lifetime of ∼1.6 ps, indicating a slower cooling rate than is observed in bulk gold.

© 1999 Optical Society of America

OCIS Codes
(260.3910) Physical optics : Metal optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

Citation
Richard D. Averitt, Sarah L. Westcott, and Naomi J. Halas, "Ultrafast optical properties of gold nanoshells," J. Opt. Soc. Am. B 16, 1814-1823 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-10-1814


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. L. Eesley, “Observation of nonequilibrium electron heating in copper,” Phys. Rev. Lett. 51, 2140–2143 (1983). [CrossRef]
  2. P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988). [CrossRef] [PubMed]
  3. J. A. Prybyla, H. W. K. Tom, and G. D. Aumiller, “Femtosecond time-resolved surface reaction: desorption of Co from Cu(111) in <325 fsec,” Phys. Rev. Lett. 68, 503–506 (1992). [CrossRef] [PubMed]
  4. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films,” Phys. Rev. Lett. 68, 2834–2837 (1992). [CrossRef] [PubMed]
  5. D. Steinmüller-Nethl, R. A. Höpfel, E. Gornik, A. Leitner, and F. R. Aussenegg, “Femtosecond relaxation of localized plasma excitations in Ag islands,” Phys. Rev. Lett. 68, 389–392 (1992). [CrossRef] [PubMed]
  6. T. W. Roberti, B. A. Smith, and J. Z. Zhang, “Ultrafast electron dynamics at the liquid–metal interface: femtosecond studies using surface plasmons in aqueous silver colloid,” J. Chem. Phys. 102, 3860–3866 (1995). [CrossRef]
  7. J.-Y. Bigot, J.-C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett. 75, 4702–4705 (1995). [CrossRef] [PubMed]
  8. M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, “Optically induced damping of the surface plasmon resonance in gold colloids,” Phys. Rev. Lett. 78, 2192–2195 (1997). [CrossRef]
  9. M. Nisoli, S. Stagira, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, “Ultrafast electronic dynamics in solid and liquid gallium nanoparticles,” Phys. Rev. Lett. 78, 3575–3578 (1997). [CrossRef]
  10. S. L. Logunov, T. S. Ahmadi, M. A. El-Sayed, J. T. Khoury, and R. L. Whetten, “Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy,” J. Phys. Chem. 101, 3713–3719 (1997). [CrossRef]
  11. J. Hodak, I. Martini, and G. V. Hartland, “Ultrafast study of electron-phonon coupling in colloidal gold particles,” Chem. Phys. Lett. 284, 135–141 (1998). [CrossRef]
  12. J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Size-dependent plasmon lifetimes and electron–phonon coupling time constants for surface bound Na clusters,” Phys. Rev. Lett. 80, 45–48 (1998). [CrossRef]
  13. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998). [CrossRef]
  14. T. V. Shahbazyan, I. E. Perakis, and J.-Y. Bigot, “Size-dependent surface plasmon dynamics in metal nanoparticles,” Phys. Rev. Lett. 81, 3120–3123 (1998). [CrossRef]
  15. J. Z. Zhang, B. A. Smith, A. E. Faulhaber, J. K. Anderson, and T. J. Rosales, “Femtosecond studies of colloidal metal nano-particles,” in Ultrafast Processes in Spectroscopy, O. Svelto, S. De Silvestri, and G. Denardo, eds., Vol. IX of Ultrafast Processes in Spectroscopy (Plenum, New York, 1996), pp. 561–565. [CrossRef]
  16. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220 (1997). [CrossRef]
  17. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998). [CrossRef]
  18. R. D. Averitt, S. L. Westcott, and N. J. Halas, “The linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999). [CrossRef]
  19. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast electron dynamics in gold nanoshells,” Phys. Rev. B 58, 10, 203–10, 206 (1998). [CrossRef]
  20. H. S. Zhou, I. Honma, H. Komiyama, and J. W. Haus, “Controlled synthesis and quantum-size effect in gold-coated nanoparticles,” Phys. Rev. B 50, 12, 052–12, 056 (1994). [CrossRef]
  21. C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15, 337–15, 348 (1994). [CrossRef]
  22. R. D. Averitt, “Gold nanoshells: optical properties and femtosecond electron dynamics,” Ph.D. dissertation (Rice University, Houston, Tex., 1998).
  23. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au,” Phys. Rev. B 51, 11, 433–11, 445 (1995). [CrossRef]
  24. N. E. Christensen and B. O. Seraphin, “Relativistic band calculation and the optical properties of gold,” Phys. Rev. B 4, 3321–3344 (1971). [CrossRef]
  25. R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au, and Cu,” Phys. Rev. B 5, 3883–3894 (1972). [CrossRef]
  26. R. Rosei, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory,” Phys. Rev. B 10, 474–483 (1974). [CrossRef]
  27. R. Rosei, F. Antonangeli, and U. M. Grassano, “d bands position and width in gold from very low temperature thermomodulation measurements,” Surf. Sci. 37, 689–699 (1973). [CrossRef]
  28. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B 12, 557–563 (1975). [CrossRef]
  29. W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 eV,” Phys. Rev. Lett. 18, 445–448 (1967). [CrossRef]
  30. K. Ohta and H. Ishida, “Comparison among several numerical integration methods for Kramers–Kronig transformation,” Appl. Spectrosc. 42, 952–957 (1988). [CrossRef]
  31. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974) [Zh. Eksp. Teor. Fiz. 66, 776–781 (1974)].
  32. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13, 592–13, 595 (1992). [CrossRef]
  33. C.-K. Sun, F. Vallée, L. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond investigation of electron thermalization in gold,” Phys. Rev. B 48, 12, 365–12, 368 (1993). [CrossRef]
  34. M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, “Relaxation between electrons and the crystalline lattice,” Sov. Phys. JETP 4, 173–178 (1957) [Zh. Eksp. Teor. Fiz. 31, 232–237 (1956)].
  35. E. A. Manykin, P. P. Poluéktov, and Y. G. Rubezhnyĭ, “Theory of absorption of electromagnetic waves by small particles,” Sov. Phys. JETP 43, 1105–1109 (1976) [Zh. Eksp. Teor. Fiz. 70, 2117–2126 (1976)].
  36. E. D. Belotskii and P. M. Tomchuk, “Electron–phonon interaction and hot electrons in small metal islands,” Surf. Sci. 239, 143–155 (1990). [CrossRef]
  37. S. A. Gorban, S. A. Nepijko, and P. M. Tomchuk, “Electron–phonon interaction in small metal islands deposited on an insulating substrate,” Int. J. Electron. 70, 485–490 (1991). [CrossRef]
  38. E. D. Belotskii and P. M. Tomchuk, “Surface electron–phonon energy exchange in small metallic particles,” Int. J. Electron. 73, 955–957 (1992). [CrossRef]
  39. J. Z. Zhang, “Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: effects of size and surface,” Acc. Chem. Res. 30, 423–429 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited